Курсовая работа квантование сигнала. Open Library - открытая библиотека учебной информации

Сигнал (от лат. signum - знак) - знак, физический процесс (или явление), несущий информацию о каком-либо событии, состоянии объекта наблюдения либо передающий команды управления, указания, оповещения.

Сигнал является материальным носителем информации, которая передается от источника к потребителю.

Сигнал - это изменяющийся во времени физический процесс. Такой процесс может содержать различные характеристики. При взаимодействии сигнала с физическими телами возникают определенные изменения свойств этих тел, которые можно зарегистрировать. Таким образом, будем считать, что данные - это зарегистрированные сигналы. Характеристика, которая используется для представления данных, называется параметром сигнала. Если параметр сигнала принимает ряд последовательных значений и их конечное число, сигнал называется дискретным. Если параметр сигнала непрерывная функция, то сигнал называется непрерывным.

Квантование сигнала - преобразование сигнала в последовательность импульсов (квантование сигнала по времени) или в сигнал со ступенчатым изменением амплитуды (квантование сигнала по уровню), а также одновременно и по времени, и по уровню. Применяется при преобразовании непрерывной величины в код в вычислительных устройствах, цифровых измерительных приборах и др.

Данные, безусловно, несут в себе информацию, но они ей не тождественны. Для того чтобы данные стали информацией необходимо наличие методов пересчета одной величины в другую. Данные - диалектическая составная часть информации. В соответствии с методом регистрации данные могут храниться и транспортироваться на носителях различных видов.

Самым распространенным носителем данных в настоящее время является бумага. На бумаге данные регистрируются путем изменения оптических характеристик ее поверхности. В то же время изменение коэффициента отражения поверхности в определенном диапазоне длин волн используется в устройствах, осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием (CD ROM). Магнитные ленты и магнитные диски, служащие в современных компьютерах главными носителями информации, используют изменение магнитных свойств тела. Свойства информации получаемой пользователем, тесно связаны со свойствами носителей данных, с которых эта информация будет получена. Любой носитель можно характеризовать параметром разрешающей способности , т.е. количеством данных записанных в принятой на носителе единице измерения, и динамическим диапазоном - логарифмическим отношением интенсивности амплитуд максимального и минимального регистрируемого сигнала. От этих свойств носителя зависят такие свойства информации, как полнота, доступность и достоверность. Задача преобразования данных с целью смены носителя относится к одной из важнейших задач информатики. В стоимости вычислительных систем устройства для ввода и вывода данных, работающие с носителями информации, составляют не меньше половины стоимости аппаратных средств.

Обуславливая диалектическое единство данных и методов в информационном процессе, определяют следующие понятия.

Динамический характер информации. Данные имеют статичный характер. Информация динамически меняется и существует только в момент времени взаимодействия данных и методов. Таким образом, информация существует только в момент протекания информационного процесса. Все остальное время она содержится в виде данных.

Требования адекватности методов. Одни и те же данные могут в момент потребления поставлять разную информацию, в зависимости от степени адекватности взаимодействующих с ними методов. Использование более адекватных методов даст более полную информацию.

Диалектический характер взаимодействия данных и методов. Данные являются объективными, это результат регистрации объективно существовавших сигналов, вызванных изменениями в материальных полях или телах. В тоже время методы являются субъективными. В основе искусственных методов лежит алгоритм, т.е. упорядоченная последовательность команд, составленная и подготовленная человеком (субъектом). В основе естественных методов лежат биологические свойства субъектов информационного процесса.

Таким образом, информация возникает и существует в момент диалектического взаимодействия объективных данных и субъективных методов.

Для автоматизации работы с данными, относящимися к различным типам и несущим в себе различную информацию очень важно унифицировать форму их представления. Для этого обычно используется прием кодирования.

Кодирование - это выражение данных одного типа через данные другого типа.

Естественные человеческие языки - это не что иное, как системы кодирования понятий для выражения мыслей посредством речи.

В вычислительной технике работа ведется с числовой информацией. Остальная информация тексты, звуки, изображения и т.д. для обработки в вычислительной среде должна быть преобразована в числовую форму. При этом все числа в память компьютера записываются с использованием, так называемого двоичного кодирования. Двоичное кодирование основано на представлении данных последовательностью всего двух знаков 0 и 1. Эти знаки называются двоичными цифрами, по-английски binary digit или сокращенно (bit) бит.

Двоичная система кодирования выбрана совсем не случайно. Она легко реализуется технически. Электронные схемы для обработки двоичных кодов должны находиться в одном из двух состояний «есть сигнал/нет сигнала» или «высокое / низкое» напряжение и т.д. Схему легко переключать из одного состояния в другое.

Бит - минимальная единица информации в вычислительной технике. Один двоичный разряд.

Группа из восьми бит называется байт и обеспечивает основу записи информации в память компьютера.

  • 1024 байта = 1 килобайту (Кб)
  • 1024 килобайта = 1 мегабайту (Мб)
  • 1024 мегабайта = 1 гигабайту (Гб)

Для правильного понимания, как представляется информации в памяти компьютера, рассмотрим различные системы счисления, используемые современными вычислительными средствами.

Система счисления - это совокупность правил наименования и изображения чисел с помощью набора знаков.

Системы счисления бывают позиционные и непозиционные .

Непозиционная система счисления - это система, где порядок цифры в числе определяется по установленному правилу. Например, непозиционной системой счисления является «римская» система.

Позиционной системой счисления , называется система - где порядок цифры в числе определяется рядом степени числа, которое является основанием данной системы счисления.

В общем виде целое число в позиционной системе счисления можно представить выражением:

N (m) = k0 * m0 + k1 * m1 +…kn-1 * mn-1, где

N(m) - число в m-ой системе счисления;

m - разрядность системы (двоичная, восьмеричная, десятичная, шестнадцатеричная системы m = 2; m = 8; m = 10, m = 16);

n - количество разрядов в числе;

k - цифра в числе.

Рассмотрим, как записываются числа в позиционных системах счисления, используемых современной вычислительной техникой.

Десятичная система счисления.

Основанием десятичной системы является ряд степени числа 10. Разрядность системы m = 10. В десятичной системе счисления 10 цифр (от 0 до 9). Возьмем, к примеру, десятичное число 1957. Число, состоит из четырех цифр - четырехзначное, т.е. n =4. Используя выше приведенную формулу, получим число в десятичной системе счисления.

N(10) = 7*100 + 5*101 + 9*102 + 1*103 = 1957

Двоичная система счисления.

Основанием двоичной системы является ряд степени числа 2. Разрядность системы m = 2. В двоичной системе счисления 2 цифры (0 и 1). Возьмем, к примеру, двоичное число 100011В (В-идентификатор двоичной системы счисления). Число, состоит из шести цифр - шестизначное, т.е. n = 6. Используя выше приведенную формулу, получим десятичное число.

N(2) = 1*20 + 1*21 + 0*22 + 0*23 + 0*24 + 1*25 = 35, т.е. двоичное число 100011В = десятичному числу 35.

Обратим внимание, что для записи чисел в позиционных системах счисления могут быть использованы одинаковые цифры. Так цифры 0 и 1 используются как десятичной, так и двоичной системой. Поэтому в записи чисел недесятичной системы счисления принято использовать буквы являющиеся идентификаторами систем счисления и позволяющие отличить числа одной системы счисления от другой.

Восьмеричная система счисления

Основанием восьмеричной системы является ряд степени числа 8. Разрядность системы m = 8. В восьмеричной системе счисления 8 цифр (от 0 до 7). Возьмем, к примеру, восьмеричное число 573Q (Q-идентификатор восьмеричной системы счисления). Число, состоит из трех цифр - трехзначное, т.е. n = 3. Используя выше приведенную формулу, получим десятичное число.

N(8) = 3*80 + 7*81 + 5*82 = 379, т.е. восьмеричное число 573Q = десятичному числу 379.

Шестнадцатеричная система счисления.

Основанием шестнадцатеричной системы является ряд степени числа 16. Разрядность системы m = 16. В шестнадцатеричной системе счисления 16 цифр (от 0 до F), первые десять цифр от 0 до 9 совпадают с цифрами десятичной системы, а затем идут цифры: A - цифра десять; B - цифра одиннадцать; C - цифра двенадцать; D - цифра тринадцать; E - цифра четырнадцать; F - цифра пятнадцать. Возьмем, к примеру, шестнадцатеричное число 1A7H (H-идентификатор шестнадцатеричной системы счисления). Число, состоит из трех цифр - трехзначное, т.е. n = 3. Используя выше приведенную формулу, получим десятичное число.

N(16) = 7*160 + 10*161 + 1*162 = 423, т.е. шестнадцатеричное число 1A7H = десятичному числу 423.

Каждый раз, вычисляя число N(m) по приведенной выше формуле мы получаем число в десятичной системе. Таким образом, числа из 2-ой, 8-ой и 16-ой системы мы переводили в десятичную систему счисления.

Квантование по уровню применяется для получения конечного числа амплитудных значений дискретных отсчетов сигнала взамен непрерывного бесконечно большого количества их значений, т.е. процесс квантования аналогичен процедуре округления числа до ближайшего разрешенного значения. Такое округление всегда связано с погрешностью, называемой погрешностью квантования.

В результате квантования возникают специфические нелинейные искажения, действие которых на передаваемый сигнал можно условно представить как добавление к неискаженному сигналу некоторой аддитивной помехи - шума квантования. Эти искажения неустранимы, но практически могут быть сделаны неощутимыми для получателя сообщений при надлежащем выборе числа уровней округляемой (квантуемой) величины сигнала.

Рисунок 4.1 - Амплитудная характеристика квантующего устройства с равномерной шкалой

Как видно из рисунка 6, недостаток равномерной шкалы квантования заключается в том, что относительная погрешность квантования, т.е. отношение

для сильных сигналов мала, в то время как для слабых сигналов она велика.

В зависимости от разбивки динамического диапазона сообщения на уровни квантования различают равномерное (линейное) и неравномерное (нелинейное) квантования. В первом случае на всем динамическом диапазоне сообщения шаг квантования выбирается одинаковым. При передаче речевых сигналов наиболее вероятны сигналы с малыми мгновенными значениями, поэтому для передачи их с меньшей погрешностью необходимо уменьшить шаг квантования. Обычно требуют, чтобы защищенность речевого сигнала от шума квантования была не менее 20 дБ на минимальном уровне средней мощности. Под защищенностью понимают

где - мощность сигнала;

Мощность шумов квантования.

При равномерном квантовании для получения требуемой защищенности от шумов квантования при передаче речевых сигналов кодирование должно производиться достаточно большим числом разрядов кода, что нежелательно. При увеличении числа разрядов кода уменьшается длительность импульсов и соответственно расширяется спектр сигнала ИКМ, усложняются устройства кодирования и декодирования, увеличиваются требования к их быстродействию.

Таким образом, недостатком равномерного квантования является то, что защищенность от шумов квантования минимальна для наиболее слабых сигналов и увеличивается пропорционально увеличению уровня сигнала. Для выравнивания величины при изменении уровня сигнала в широких пределах и соответственно для уменьшения количества уровней квантования и уменьшения разрядности двоичного кода применяют неравномерное квантование, при котором шаг квантования имеет минимальное значение для слабых сигналов и увеличивается с увеличением уровня входного сигнала.

Нелинейная шкала квантования в системах передачи с ИКМ может быть реализована несколькими способами: сжатием динамического диапазона сигнала перед кодированием, для чего используются компрессоры, и последующим его расширением после декодирования с помощью экспандеров; нелинейным кодированием и декодированием; цифровым компандированием.

Рисунок 4.2 - Амплитудная характеристика квантующего устройства с нелинейной (неравномерной) шкалой

При неравномерном квантовании непрерывных сигналов обычно ставится задача: выбором закона изменения шага квантования обеспечить примерно равное отношение сигнал-шум квантования в достаточно широком диапазоне уровней входных сигналов. Если шаг квантования будет возрастать по мере увеличения входного сигнала, то по сравнению с равномерным квантованием для слабых сигналов отношение сигнал-шум возрастет, а для сильных снижается, оставаясь, однако, достаточно высоким.

Рассмотрим один из возможных способов осуществления неравномерного квантования - с использованием аналоговых компандеров.

Компрессор представляет собой устройство с нелинейной амплитудной характеристикой, называемой характеристикой компрессии. Слабые сигналы компрессор усиливает в большей степени, чем сильные, благодаря чему происходит сжатие динамического диапазона ().

Применение компрессора перед кодером с равномерным квантованием позволяет получить неравномерное квантование. На приемном конце после декодера сигнал поступает на экспандер, имеющий обратную компрессору амплитудную характеристику, при этом суммарная амплитудная характеристика должна быть линейной. Экспандер устраняет искажения, вносимые в сигнал компрессором, так что результирующая амплитудная характеристика сигнала "компрессор-экспандер" является линейной. Система, состоящая из последовательно включенных компрессора и экспандера, называется компандером.

Применение неравномерного квантования позволяет обеспечить требуемую защищенность от шумов квантования для наиболее слабых речевых сигналов при восьмиразрядном кодировании вместо двенадцатиразрядного при равномерном квантовании.

Недостатком аналогового компандирования является сложность получения с большой точностью взаимообратных амплитудных характеристик компрессора и экспандера, вследствие чего нелинейность суммарной амплитудной характеристики приводит к нелинейным искажениям передаваемых сигналов.

Необходимое качество передачи сигналов в реальных условиях достигается путем применения неравномерных кодирующих и декодирующих устройств (методами нелинейного кодирования), когда формирование неравномерной квантующей характеристики осуществляется непосредственно в кодере (декодере). Последний в этом случае называется нелинейным.

Наиболее распространенными для кодеров с неравномерным шагом квантования являются два приблизительно равноценных закона компрессии и, с помощью которых получается квазилогарифмическая характеристика компрессора.

Дискретизация непрерывных сообщений производится АИМ - модуляторами в соответствии с теоремой Котельникова. На выходе АИМ - модуляторов формируется групповой АИМ - сигнал. Работой АИМ - модуляторов управляют последовательности канальных импульсов. Групповой АИМ - сигнал поступает на кодер, который одновременно с кодированием осуществляет операцию квантования по уровню.

Многоканальные системы передачи в основном применяются для передачи речевых сигналов, которые относятся к непрерывным. Для передачи непрерывного сообщения с помощью ИКМ необходимо выполнить следующие операции:

· дискретизация сообщения по времени (получение АИМ - сигнала);

· квантование полученных импульсов (отсчетов, выборок) по амплитуде;

· кодирование квантованных по амплитуде импульсов.

В результате квантования возникают специфические нелинейные искажения, действие которых на передаваемый сигнал можно условно представить как добавление к неискаженному сигналу некоторой аддитивной помехи - шума квантования. Эти искажения неустранимы, но практически могут быть сделаны неощутимыми для получателя сообщений при надлежащим выборе числа уровней округляемой (квантуемой) величины сигнала.

В зависимости от разбивки динамического диапазона сообщения на уровни квантования различают равномерное (линейное) и неравномерное (нелинейное) квантования.

Наиболее распространенными для кодеров с неравномерным шагом квантования являются два приблизительно равноценных закона компандирования м и A , с помощью которых получается квазилогарифмическая характеристика компрессора.

Характеристика компрессии закона A? описывается следующим уравнением:

где sign (л) - полярность сигнала;

л - амплитуда входного сигнала;

А - параметр, используемый для определения степени компрессирования.

В качестве международного стандарта для нелинейных кодеров взвешивающего типа принята сегментная характеристика компандирования типа А = 87,6/13 .

Для законов квантования А = 87,6/13 рассчитаем для первых N i отсчётов каждого входного сигналов в первом цикле передачи:

· абсолютное значение отсчётов в условных единицах;

· номер сегмента (С ) отсчётов;

· номер уровня квантования (К ) отсчётов в сегментах.

для 7-го канала для 8-го канала

для 9-го канала для 10-го канала

для 11-го канала для 12-го канала

Номер сегмента С квантованного отсчёта определяется как наименьшее целое из выражения:

Найдем разность r между амплитудой входного сигнала и величиной, соответствующей нижней конечности точке данного сегмента:

Номер уровня квантования К отсчёта в сегменте определяется как наименьшее целое из выражения:

Подставляя значения в формулу, получим:

Аналогичные расчеты произведем для 2-го, 3-го и 4-го циклов передачи. Результаты расчетов сведем в таблицу 4.1.

Таблица 4.1 - Результаты квантования отсчетов по уровню и их кодирование

Номер цикла

Номер исследуемого канала

Значение отсчёта

Полярность отсчёта

Код полярности отсчёта

Номер сегмента

Код номера сегмента

Уровень квантования в сегменте

Код уровня квантования в сегменте

Закодированное значение отсчёта

Физические сигналы являются непрерывными функциями времени. Чтобы преобразовать непрерывный, в частности, аналоговый сигнал в цифровую форму используются аналого-цифровые преобразователи (АЦП). Процедуру аналого-цифрового преобразования сигнала обычно представляют в виде последовательности трех операций: дискретизации, квантования и кодирования.

Операция дискретизации заключается в определении выборки моментов времени измерения сигнала. Операция квантования состоит в считывании значений координаты сигнала в выбранные моменты измерения с заданным уровнем точности, а операция кодирования - в преобразовании полученных измерений сигнала в соответствующие значения некоторого цифрового кода или кодовой комбинации, которые затем передаются по каналам связи.

Процедуру восстановления непрерывного сигнала из цифрового представления также можно представить в виде двух операций: декодирования и демодуляции. Операция декодированиявыполняет операцию обратную операции кодирования, т.е. преобразует последовательность заданных значений кодовой комбинации (кодовых слов) в последовательность измерений, следующих друг за другом через заданные интервалы времени дискретизации. Операция демодуляциивыполняет интерполяцию или восстановление непрерывного сигнала по его измерениям. Преобразование сигнала из цифровой формы в непрерывный сигнал осуществляется цифро-аналоговыми преобразователями(ЦАП). Считается, что система аналого-цифрового и цифро-аналогового преобразований адекватна сигналу, если восстановленный непрерывный сигнал (копия) соответствует исходному непрерывному сигналу (оригиналу) с заданной погрешностью.

Конец работы -

Эта тема принадлежит разделу:

Информатика

Федеральное бюджетное государственное образовательное.. тула г..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Высшего профессионального образования
«Тульский государственный университет» Политехнический институт Кафедра "Автоматизированные станочные системы"

Понятие информатики
Информатика – это техническая наука, систематизирующая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы фу

История развития информатики
История компьютера тесным образом связана с попытками человека облегчить автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затрудни

Мировоззренческие экономические и правовые аспекты информационных технологий
Базовый юридический документ в России, имеющий отношение к информатике - Закон «Об информации, информатизации и защите информации». В законе решаются вопросы правового регулирования на информационн

Синтаксическая мера информации
Объем данных Vд. в сообщение измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес и соответственно

Семантическая мера информации
Тезаурус- это совокупность сведений, которыми располагает пользователь или система. В зависимости от соотношений между смысловым содержанием информации S и тезаурусом польз

Алгоритмическая мера информации
Каждый согласится, что слово 0101….01 сложнее слова 00….0, а слово, где 0 и 1 выбираются из эксперимента – бросания монеты (где 0-герб,1 –решка), сложнее обоих предыдущих.

Количество и качество информации
Потребительские показатели качества: · репрезентативность, содержательность, достаточность · актуальность, своевременность, точность · достоверность, усто

Единицы измерения информации
В современные компьютеры мы можем вводить текстовую информацию, числовые значения, а также графическую и звуковую информацию. Количество информации, хранящейся в ЭВМ, измеряется ее

Информацияи энтропия
Можем ли мы ввести разумную меру информации? Над этим вопросом задумался американский математик и инженер Клод Шеннон. Результатом размышлений стала опубликованная им в 1948 г. стат

Сообщения и сигналы
Шеннону удалось придумать удивительно простую и глубокую модель передачи информации, без которой теперь не обходится ни один учебник. Он ввел понятия: источник сообщения, передатчик

Энтропия
Разные сообщения несут в себе разные объемы информации. Попробуем сравнить следующие два вопроса: 1. На каком из пяти курсов университета учится студент? 2. Как уп

Избыточность
Пусть источник сообщения передает предложение реального языка. Оказывается, каждый следующий символ не полностью случаен, и вероятность его появления не полностью предопределена сре

Сенсация
Понятия энтропии (непредсказуемости) сообщения и избыточности (предсказуемости) естественно соответствуют интуитивным представлениям о мере информации. Чем более непредсказуемо сооб

Понятие информационной технологии
Технологияпри переводе с греческого (techne) означает искусство, мастерство, умение, а это не что иное, как процессы. Под процессом следует понимать определенную совокупность действ

Новая информационная технология
К настоящему времени информационная технология прошла несколько эволюционных этапов, смена которых определялась главным образом развитием научно-технического прогресса, появлением н

Инструментарий информационной технологии
Инструментарий информационной технологии - один или несколько взаимосвязанных программных продуктов для определенного типа компьютера, технология работы в котором позволяет достичь

Составляющие информационной технологии
Используемые в производственной сфере такие технологические понятия, как норма, норматив, технологический процесс, технологическая операция и т.п., могут применяться и в информацион

Развитие информационных технологий
Эволюция информационных технологий наиболее ярко прослеживается на процессах хранения, транспортирования и обработки информации.

Первое поколение ИТ
Первое поколение (1900-1955) связано с технологией перфокарт, когда запись данных представлялась на них в виде двоичных структур. Процветание компании IBM в период 1915-1960 гг. свя

Второе поколение ИТ
Второе поколение (программируемое оборудование обработки записей, 1955-1980 гг.) связано с появлением технологии магнитных лент, каждая из которых могла хранить информацию десяти ты

Третье поколение ИТ
Третье поколение (оперативные базы данных, 1965-1980 гг.) связано с внедрением оперативного доступа к данным в интерактивном режиме, основанном на использовании систем баз данных с

Четвертое поколение ИТ
Четвертое поколение (реляционные базы данных: архитектура «клиент - сервер», 1980-1995 гг.) явилось альтернативой низкоуровневому интерфейсу. Идея реляционной модели состоит в едино

Пятое поколение ИТ
Пятое поколение (мультимедийные базы данных, с 1995 г.) связано с переходом от традиционных хранящих числа и символы, к объектно-реляционным, содержащим данные со сложным поведением

Базовая информационная технология
Как уже отмечалось, понятие информационной технологии не может быть рассмотрено отдельно от технической (компьютерной) среды, т.е. от базовой информационной технологии. Апп

Предметная информационная технология
Под предметной технологией понимается последовательность технологических этапов по преобразованию первичной информации в результатную в определенной предметной области, независящая

Обеспечивающая информационная технология
Обеспечивающие информационные технологии - это технологии обработки информации, которые могут использоваться как инструментарий в различных предметных областях для решения различных

Функциональная информационная технология
Функциональная информационная технология образует готовый программный продукт (или часть его), предназначенный для автоматизации задач в определенной предметной, области и заданной

Свойства информационных технологий
В числе отличительных свойств информационных технологий, имеющих стратегическое значение для развития общества, представляется целесообразным выделить следующие семь наиболее важных

Характеристики сигналов, передаваемых по каналу
Сигнал может быть охарактеризован различными параметрами. Таких параметров, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. На

Модуляция сигналов
Сигналами называются физические процессы, параметры которых содержат информацию. В телефонной связи при помощи электрических сигналов передаются звуки разговора, в телевидении – изо

Виды и характеристики носителей
Если обозначить параметры носителя через a1 , a2 , …, an ,то носитель как функция времени может быть представлен в виде: UН =g(a

Спектры сигналов
Всё многообразие сигналов, используемых в информационных системах, можно разделить на 2 основные группы: детерминированные и случайные. Детерминированный сигнал характеризуется тем,

Периодические сигналы
Функция x(t) называется периодической, если при некотором постоянном Т выполняется равенство: x(t)=x(t+nT), где Т – период функции, n –

Тригонометрическая форма
Любой периодический сигнал x(t), удовлетворяющий условию Дирихле (x(t) – ограниченая, кусочно-непрерывная, имеет на протяжении периода конечное число экстремумов), мож

Комплексная форма
В математическом отношении удобнее оперировать комплексной формой ряда Фурье. Её получают, применяя преобразование Эйлера

Определение погрешности
При разложении периодических функций на сумму гармоник на практике часто ограничиваются несколькими первыми гармониками, а остальные не учитываются. Приближенно представляя функцию

Непериодические сигналы
Всякий непериодический сигнал можно рассматривать как периодический, период изменения которого равен ¥. В связи с этим спектральный анализ периодических процессов может быть обо

Модуляция и кодирование
5.1. Коды: прямой, обратный, дополнительный, модифицированный Одним из способов выполнения операции вычитания является замена знака вычитаемого на противоп

Прямой код числа
При кодировании прямым n-разрядным двоичным кодом один разряд (как правило, самый старший) отводится для знака числа. Остальные n-1 разрядов - для значащих цифр. Значение знакового разряда равно 0

Обратный код числа
Обратный код строится только для отрицательного числа. Обратный код двоичного числа является инверсным изображением самого числа, в котором все разряды исходного числа принимают инверсное (обратное

Дополнительный код числа
Дополнительный код строится только для отрицательного числа. Использование прямого кода усложняет структуру ЭВМ. В этом случае операция сложения двух чисел, имеющих разные знаки, должна быть замене

Модифицированный код числа
При сложении чисел, меньших единицы с фиксированной запятой, может получиться результат по абсолютной величине больший единицы, что ведет к искажению результатов вычислений. Переполнение разрядной

Систематические коды
Как уже указывалось, функции контроля можно осуществить при информационной избыточности. Такая возможность появляется при использовании специальных методов кодирования информации. В

Кодирование по методу четности-нечетности
Простым примером кода с обнаружением одной ошибки является код с битом чётности. Конструкция его такова: к исходному слову добавляется бит чётности. Если в исходном слове число единичек чётно, то з

Коды Хэмминга
Коды, предложенные американским ученым Р. Хэммингом (Рисунок 3.3), обладают способностью не только обнаружить, но и исправить одиночные ошибки. Эти коды – систематические.

Распределенная обработка данных
В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать

Обобщенная структура компьютерной сети
Компьютерные сети являются высшей формой многомашинных ассоциаций. Основные отличия компьютерной сети от многомашинного вычислительного комплекса: Размерность. В сос

Обобщенные характеристики сигналов и каналов
Сигнал может быть охарактеризован различными параметрами. Таких параметров, вообще говоря, очень много, но для задач, которые приходится решать на практике, существенно лишь небольш

Характеристики канала передачи информации без помех
Рисунок 5.4 - Структура канала передаи информации без помех

Характеристики каналов передачи информации с помехами
Рисунок 5.5 - Структура канала передаи информации с помехами

Методы повышения помехоустойчивости передачи и приема
В основах всех способов повышения помехоустойчивости информационных систем лежит использование определенных различий между полезным сигналом и помехой. Поэтому для борьбы с помехами

Современные технические средства обмена данных и каналообразующей аппаратуры
Для передачи сообщений в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделенные телефонные каналы и специальные каналы для передачи цифро

Представление информации в цифровых автоматах (ЦА)
Коды как средство тайнописи появились в глубокой древности. Из­вестно, что еще древнегреческий историк Геродот к V в. до н.э. приводил примеры писем, понятных лишь адресату. Секретн

Информационные основы контроля работы цифровых автоматов
Алгоритмы выполнения арифметических операций обеспечат правильный результат только в случае, если машина работает без нарушений. При возникновении какого-либо нарушения нормального

Помехоустойчивость кода
Минимальное кодовое расстояние некоторого кода определяется как минимальное расстояние Хэмминга между любыми разрешенными кодовыми словами этого кода. У безызбыточного кода м

Метод контроля четности
Это простой способ обнаружения некоторых из возможных ошибок. Будем использовать в качестве разрешенных половину возможных кодовых комбинаций, а именно те из них, которые имеют четное число единиц

Метод контрольных сумм
Рассмотренный выше метод контроля четности может быть применен многократно для различных комбинаций разрядов передаваемых кодовых слов – и это позволит не только обнаруживать, но и

Коды Хэмминга
Коды, предложенные американским ученым Р. Хэммингом, обладают способностью не только обнаружить, но и исправить одиночные ошибки. Эти коды – систематические. По методу Хэмм

Контроль по модулю
Разнообразные задачи можно решать с помощью метода контроля, основанного на свойствах сравнений. Развитые на этой основе методы контроля арифметических и логических операций называют контролем п

Числовой метод контроля
При числовом методе контроля код заданного числа определяется как наименьший положительный остаток от деления числа на выбранный модуль р: rA = A-{A/p}p

Цифровой метод контроля
При цифровом методе контроля контрольный код числа образуется делением суммы цифр числа на выбранный модуль:

Выбор модуля для контроля
Достоинства числового метода контроля - в справедливости свойств сравнений для контрольных кодов, что облегчает контроль арифметических операций; достоинства цифрового метода в возм

Операция сложения по модулю 2
Операцию сложения по модулю 2 можно выразить через другие арифметические операции, например. Ес

Операция логического умножения
Операцию логического умножения двух чисел можно выразить через другие арифметические и логические операции:

Контроль арифметических операций
Арифметические операции выполняют на сумматорах прямого, обратного и дополнительного кодов. Предположим, что изображение чисел (операнды) хранятся в машине в некотором коде, т. е. о

Арифметические коды
Контроль по модулю, рассмотренный ранее, позволяет эффективно обнаруживать одиночные ошибки. Однако одиночная ошибка в одном разряде может привести к группе ошибок в нескольких разр

ЦАП и АЦП
Преобразование между аналоговыми и цифровыми величинами-основная операция, в вычислительных и управляющих системах, поскольку физические параметры, такие, как температура, перемещен

Уровни цифровой логики
В значительном большинстве ни цифроаналоговые, ни аналогоцифровые преобразователи практически почти невозможно применять без знания типа используемого на входе или выходе цифрового

Управляющий выходной сигнал строб-импульс
Большинство цифроналоговых преобразователей, за исключением преобразователей последовательных типов (таких, которые основаны на зарядке емкостей), имеют основную схему, реагирующую

Аналоговые сигналы
Обычно на вход аналогоцифровых преобразователей (АЦП) подаются сигналы в виде напряжения. Цифроаналоговые преобразователи (ЦАП) часто на выходе имеют сигналы в форме напряжения при

Цифроаналоговые преобразователи
Преобразование цифровых величин в пропорциональные аналоговые величины необходимо для того, чтобы результаты цифровых вычислений могли быть использованы и без труда поняты в аналого

Цифроаналоговое преобразование
На Рисунок 6.2 показана структурная схема ЦАП, который принимает 3-разрядное с дополнительным знаковым разрядом цифровое слово и преобразует его в эквивалентное напряжение. Основным

Основные типы ЦАП
Как упоминалось ранее, в настоящее время подавляющее большинство ЦАП, находящих сбыт, построены по двум основным схемам: в виде цепочки взвешенных резисторов и типа R-2R. Оба назван

ЦАП со взвешенными резисторами
Преобразователи со взвешенными резисторами (Рисунок 6.3) содержат источник опорного напряжения, набор ключей, набор двоично-взвешенных прецизионных резисторов и операционный усилите

ЦАП с цепочкой резисторов типа R-2R
ЦАП с цепочкой резисторов типа R -2R также содержат источник опорного напряжения, набор ключей и операционный усилитель. Однако вместо набора двоично-взвешенных резисторов они содер

Другие типы ЦАП
ЦАП в основном бывают либо с фиксированным внутренним (или внешним), либо с внешним переменным источником опорного напряжения (умножающие преобразователи). ЦАП с фиксированным источ

Аналоговые преобразователи
По существу аналогоцифровые преобразователи либо преобразуют аналоговый входной сигнал (напряжение или ток) в частоту или последовательность импульсов, длительность которой измеряют

Аналогоцифровое преобразование
На Рисунок 6.5 показана элементарная модель аналогоцифрового преобразования с ЦАП, составляющим простой блок в системе преобразования. Импульс установки в начальное состояние устана

Двухтактные интегрирующие АЦП
Двухтактный интегрирующий АЦП, как показано на Рисунок 6.6, содержит интегратор, некоторый логический узел управления, генератор тактовых импульсов, компаратор и выходной счетчик.

АЦП последовательного приближения
Основные причины, по которым в вычислительных системах с преобразованием информации почти повсеместно используется способ последовательного приближения, заключаются в надежности это

Преобразователи напряжения в частоту
На Рисунок 6.9 показан типичный преобразователь напряжения в частоту. В нем входной аналоговый сигнал интегрируется и подается на компаратор. Когда компаратор меняет свое состояние,

Параллельные АЦП
Последовательно-параллельный и просто параллельный преобразователи применяются главным образом там, где требуется максимально высокое быстродействие. Последовательное преобразование

Характеристики ЦАП
При анализе табличных данных необходимо проявлять большую тщательность, чтобы выяснить условия, при которых определяется каждый параметр, а параметры наверняка определяются по-разно

Характеристики АЦП
Характеристики АЦП подобны характеристикам ЦАП. Кроме того, почти все сказанное о характеристиках ЦАП справедливо и для характеристик АЦП. Они тоже чаще являются типовыми, нежели ми

Совместимость с системой
Перечень характеристик, даваемый фирмами изготовителями, является лишь отправной точкой при выборе подходящего АЦП или ЦАП. Некоторые системные требования, оказывающие влияние на вы

Совместимость преобразователей (взаимозаменяемость)
Большинство АЦП и ЦАП не являются универсально совместимыми по физическим, а некоторые и по электрическим параметрам. Физически корпуса различаются размерами, при этом наиболее расп

Позиционные системы счисления
Система счисления- совокупность приемов и правил для записи чисел цифровыми знаками. Наиболее известна десятичная система счисления, в которой для записи ч

Методы перевода чисел
Числа в разных системах счисления можно представить следующим образом:

Перевод чисел делением на основание новой системы
Перевод целых чисел осуществляется делением на основание q2 новой системы счисления, правильных дробей – умножением на основание q2. Действия деления и умножения выполняются п

Табличный метод перевода
В простейшем виде табличный метод заключается в следующем: имеется таблица всех чисел одной системы с соответствующими эквивалентами из другой системы; задача перевода сводится к нахождению соответ

Представление вещественных чисел в компьютере
Для представления вещественных чисел в современных компьютерах принят способ представления с плавающей запятой. Этот способ представления опирается на нормализованную (экспоненциал

Представление чисел с плавающей запятой
При представлении чисел с плавающей запятой часть разрядов ячейки отводится для записи порядка числа, остальные разряды - для записи мантиссы. По одному разряду в каждой группе отводится для изобра

Алгоритм представления числа с плавающей запятой
перевести число из P-ичной системы счисления в двоичную; представить двоичное число в нормализованной экспоненциальной форме; рассчитать смещённый порядок числа; ра

Понятие и свойства алгоритма
Теория алгоритмов имеет большое практическое значение. Алгоритмический тип деятельности важен не только как мощный тип деятельности человека, как одна из эффективных форм его труда.

Определение алгоритма
Само слово “алгоритм” происходит от algorithmi - латинской формы написания имени аль-Хорезми, под которым в средневековой Европе знали величайшего математика из Хорезма (город в сов

Свойства алгоритма
Данное выше определение алгоритма нельзя считать строгим - не вполне ясно, что такое “точное предписание” или “последовательность действий, обеспечивающая получение требуемого результата”. Алгоритм

Правила и требования, предъявляемые к построению алгоритма
Первое правило - при построении алгоритма, прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (зак

Типы алгоритмических процессов
Типы алгоритмических процессов. Алгоритм применительно к вычислительной машине - точное предписание, т.е. набор операций и правил их чередования, при помощи которого, начиная с неко

Принципы Джона фон Неймана
В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом (Рисунок 8.5). Впервые

Функциональная и структурная организация компьютера
Рассмотрим устройство компьютера на примере самой распространенной компьютерной системы - персонального компьютера. Персональным компьютером (ПК) называют сравнительно недорогой уни

Выполнение арифметических операций с числами с фиксированной и плавающей запятой
9.6.1 Коды: прямой, обратный, дополнительный, Для машинного представления отрицательных чисел используют коды прямой, дополнительный, обратный.

Операция сложения
Операция сложения чисел в прямом, обратном и дополнительном кодах выполняется на двоичных сумматорах соответствующего кода. Двоичный сумматор прямого кода (ДС

Операция умножения
Умножение чисел, представленных в формате с фиксированной запятой, осуществляется на двоичных сумматорах прямого, обратного и дополнительного кодов. Существует несколько ме

Операция деления
Деление двоичных чисел, представленных в формате с фиксированной запятой представляет последовательные операции алгебраического сложения делимого и делителя, а затем остатков и сдвига. Деление выпо

Файлы данных
В разных источниках по информатике и вычислительной технике определения термина "файл" так же, как и термина "операционная система", могут варьироваться. Наиболе

Файловые структуры
Программная часть файловой системы, определяемая ее назначением, должна содержать следующие компоненты: Ø средства взаимодействия с процессами пользователей, которые

Носители информации и технические средства для хранения данных
Устройства хранения информации называются накопителями. В основе их работы лежат разные принципы (в основном это магнитные или оптические устройства), но используются они для одной

Организация данныхна устройствах с прямым и последовательным доступом
Под организацией данных понимается способ расположения записей файла во внешней памяти (на носителе записи). Наибольшее распространение получили следующие два вида организации файло

Вычислительная техника
Совокупность технических и математических средств (вычислительные машины, устройства, приборы, программы и пр.), используемых для механизации и автоматизации процессов вычислений и

Древнейшие счетные инструменты
Древнейшим счетным инструментом, который сама природа предоставила в распоряжение человека, была его собственная рука. «Понятие числа и фигуры,- писал Ф. Энгельс,- взято не откуда-н

Развитие абака
Бирки и веревки с узелками не могли удовлетворить возраставшие в связи с развитием торговли потребности в средствах вычисления. Развитию же письменного счета препятствовали два обст

Логарифмы
Термин «логарифм» возник из сочетания греческих слов logos - отношение, соотношение и arithmos - число. Основные свойства логарифма позволяют заменить умножение, деление, в

Суммирующая машина Блеза Паскаля
В 1640 г. попытку создать механическую вычислительную машину предпринял Блез Паскаль (1623-1662). Существует мнение, что «на идею счетной машины Блеза Паскаля натолкнуло, п

Чарльз Бэббидж и его изобретение
В 1812 года Чарльз Бэббидж начинает размышлять о возможных способах машинного вычисления таблиц. Бэббидж (Babbage) Чарльз (26 декабря 1791, Лондон - 18 октября, 1871, там ж

Табулятор Холлерита
Вооруженные карандашом и бумагой или в лучшем случае суммирующей машиной американские статистики 19 века испытывали острую необходимость в автоматизации длительной, утомительной и о

Машина Ц3
Работы по созданию вычислительных машин интересовали накануне войны военные ведомства всех стран. При финансовой поддержке Германского авиационного исследовательского института Цузе

Машина электронная вычислительная общего назначения БЭСМ-6
1. Область применения: универсальная ЭВМ для решения широкого класс задач науки и техники (Рисунок 11.18 и Рисунок 11.19). 2. Описание машины: в структуре БЭСМ-6 впервые в

IBM 360
В 1964 году фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Модели имели единую систему команд

Альтаир 8800
В январе 1975 года вышел свежий номер журнала "Popular Electronics", на обложке которого был изображен Рисунок 11.22 Altair 8800, сердцем которого был новейший микропроцес

Компьютеры Apple
В 1976 году появился персональный компьютер Apple-1 (Рисунок 11.23). Он был разработан в середине 70-х Стивом Возняком. В то время он работал на компанию Hewlett-Packard, в

IBM 5150
12 августа 1981 года компания IBM выпустила персональный компьютерIBM 5150 (Рисунок 11.25). Компьютер стоил немалые деньги – 1565 долл. и имел всего лишь 16 Кб оперативной памяти и

Описание структуры проекта
Любая программа в Delphi состоит из файла проекта (файл с расширением dpr) и одного или нескольких модулей (файлы с расширениями pas). Каждый из таких файлов описывает программную е

Описание структуры модуля
Структура модуля Модули - это программные единицы, предназначенные для размещений фрагментов программ. С помощью содержащегося в них программного кода реализуется вс

Описание элементов программ
Элементы программы Элементы программы- это минимальные неделимые ее части, еще несущие в себе определенную значимость для компилятора. К элементам относятся:

Элементы языка программирования-алфавит
Алфавит Алфавит языка Object Pascal включает буквы, цифры, шестнадцатеричные цифры, специальные символы, пробелы и зарезервированные слова. Буквы - это букв

Элементы языка программирования-идентификаторы,константы, выражения
Идентификаторы Идентификаторы в Object Pascal - это имена констант, переменных, меток, типов, объектов, классов, свойств, процедур, функций, модулей, программ и поле

Выражения на Object Pascal
Основными элементами, из которых конструируется исполняемая часть программы, являются константы, переменные и обращения к функциям. Каждый из этих элементов характеризуется своим зн

Целая и вещественная арифметика
Выражение состоит из операндов и операторов. Операторынаходятся между операндами и обозначают действия, которые выполняются над операндами. В качестве операндов выражения можно испо

Приоритет операций
При вычислении значений выражений следует учитывать, что операторы имеют разный приоритет. В Object Pascal определены следующие операции: Ø унарные not, @ ;

Встроенные функции. Построение сложных выражений
В языке Object Pascal основной программной единицей является подпрограмма. Различают два вида подпрограмм: процедуры и функции. Как процедура, так и функция, представляют собой посл

Типы данных
В математике переменные классифицируются в соответствии с некоторыми важными характеристиками. Производится строгое разграничение между вещественными, комплексными и логическими пер

Встроенные типы данных
Любой реально существующий тип данных, каким бы сложным он ни казался на первый взгляд, представляет собой простые составляющие (базовые типы), которые, как правило, всегда присутствуют в языке про

Целые типы
Диапазон возможных значений целых типов зависит от их внутреннего представления, которое может занимать один, два, четыре или восемь байтов. В Таблица 15.1 приведены характеристики целых т

Представление знака числа
Многие числовые поля не имеют знака, например, номер абонента, адрес памяти. Некоторые числовые поля предлагаются всегда положительные, например, норма выплаты, день недели, значение числа ПИ. Друг

Арифметическое переполнение
Арифметическое переполнение (arithmetic overflow) - потеря значащих цифр при вычислении значения выражения. Если в переменной можно хранить лишь неотрицательные значения (типы BYTE и WORD)

Вещественные типы. Сопроцессор
В отличие от порядковых типов, значения которых всегда сопоставляются с рядом целых чисел и, следовательно, представляются в ПК абсолютно точно, значения вещественных типов

Текстовые типы
Текстовые (символьные) типы - это типы данных, состоящие из одного символа. В Windows используется код ANSI (по названию разработавшего этот код института - American National Standa

Логический тип
Логический тип данных, названный в честь английского математика XIX века Дж. Буля кажется очень простым. Но с ним связан ряд интересных моментов. Во-первых, к данным этого

Устройства вывода
К устройствам вывода, прежде всего, можно отнести мониторы и принтеры. Монитор - устройство визуального отображения информации (в виде текста, таблиц, рисунков, чертежей и др.). &

Перечень компонентов ввода и отображения текстовой информации
В библиотеке визуальных компонентов Delphi существует множество компонентов, позволяющих отображать, вводить и редактировать текстовую информацию. В Таблица 16.1 приведен их перечен

Отображение текста в надписях компонентов Label, StaticText и Panel
Для отображения различных надписей на форме используются в основном компоненты Label, StaticText (появившийся только в Delphi 3) и Panel

Окна редактирования Edit и MaskEdit
Для отображения текстовой информации, и даже с дополнительной возможностью прокрутки длинных текстов, можно использовать также окна редактирования Edit и Ma

Многострочные окна редактирования Memo и RichEdit
Компоненты Memo и RichEdit являются окнами редактирования многострочного текста. Они так же, как и окно Edit, снабжены многими фун

Ввод и отображение целых чисел - компоненты UpDown и SpinEdit
В Delphi имеются специализированные компоненты, обеспечивающие ввод целых чисел - UpDown и SpinEdit. Компонент UpDown превращает

Компоненты выбора из списков - ListBox, CheckBox, CheckListBox и ComboBox
Компоненты ListBox и ComboBox отображают списки строк. Они отличаются друг от друга прежде всего тем, что ListBox только отображае

Функция InputBox
Окно ввода - это стандартное диалоговое окно, которое появляется на экране в результате вызова функции InputBox. Значение функции InputBox - строка

Процедура ShowMessage
Вывести на экран окно с сообщением можно при помощи процедуры ShowMessageили функции MessageDlg. Процедура ShowMessageвыв

Объявление файла
Файл - это именованная структура данных, представляющая собой последовательность элементов данных одного типа, причем количество элементов последовательности практически не ограниче

Назначение файла
Объявление файловой переменной задает только тип компонентов файла. Для того чтобы программа могла выводить данные в файл или считывать данные из файла, необходимо указать конкретны

Вывод в файл
Непосредственно вывод в текстовый файл осуществляется при помощи инструкции write или writeln. В общем виде эти инструкции записываются следующим о

Открытие файла для вывода
Перед выводом в файл его необходимо открыть. Если программа, формирующая выходной файл, уже использовалась, то возможно, что файл с результатами работы программы уже есть на диске.

Ошибки открытия файла
Попытка открыть файл может завершиться неудачей и вызвать ошибку времени выполнения программы. Причин неудачи при открытии файлов может быть несколько. Например, программа попытаетс

Устройства ввода
К устройствам ввода можем отнести следующие: клавиатура, сканер, планшет. Клавиатура компьютера - устройство для ввода информации в компьютер и подачи управляющих сигналов.

Открытие файла
Открытие файла для ввода (чтения) выполняется вызовом процедуры Reset, имеющей один параметр - файловую переменную. Перед вызовом процедуры Reset с

Чтение чисел
Следует понимать, что в текстовом файле находятся не числа, а их изображения. Действие, выполняемое инструкциями read или readln, фактически состои

Чтение строк
В программе строковая переменная может быть объявлена с указанием длины или без нее. Например: stroka1:string; stroka2

Конец файла
Пусть на диске есть некоторый текстовый файл. Нужно в диалоговое окно вывести содержимое этого файла. Решение задачи довольно очевидно: надо открыть файл, прочитать первую строку, з

Функции цикла в программе. Циклы с пред- и постусловием
Алгоритмы решения многих задач являются циклическими, т. е. для дости­жения результата определенная последовательность действии должна быть выполнена несколько раз. Например, програ

Цикл FOR
Оператор forиспользуется, если некоторую последовательность действий надо выполнить несколько раз, причем число повторений заранее известно Например, вычислить значения функц

Команды BREAK и CONTINUE
Для немедленного завершения текущего оператора цикла можно использовать подпрограмму Breakбез параметров (это подпрограмма, играющая роль оператора). Например, когда в массиве с известными г

Вложенные циклы
Если цикл включает в себя один или несколько циклов, то содержащий внутри себя другие циклы называется внешним, а цикл, содержащийся в другом цикле

Объявление массива
Массив, как и любая переменная программы, перед использованием должен быть объявлен в разделе объявления переменных. В общем виде инструкция объявления массива выглядит следующим об

Вывод массива
Под выводом массива понимается вывод на экран монитора (в диалоговое окно) значений элементов массива. Если в программе необходимо вывести значения всех элементов массива,

Ввод массива
Под вводом массива понимается процесс получения от пользователя (или из файла) во время работы программы значений элементов массива. "Лобовое" решение задачи ввод

Использование компонента StringGrid
Для ввода массива удобно использовать компонент StringGrid. Значок компонента StringGrid находится на вкладке Additional (Рисунок 19.1).

Использование компонента Memo
В некоторых случаях для ввода массива можно использовать компонент Memo. Компонент Memo позволяет вводить текст, состоящий из достаточно большого количества строк, поэтому его удобн

Поискминимального (максимального) элемента массива
Задачу поиска минимального элемента массива рассмотрим на примере массива целых чисел. Алгоритм поиска минимального (максимального) элемента массива довольно очевиден: снач

Поиск в массиве заданного элемента
При решении многих задач возникает необходимость определить, содержит ли массив определенную информацию или нет. Например, проверить, есть ли в списке студентов фамилия Петров. Зада

Ошибки при использовании массивов
При использовании массивов наиболее распространенной ошибкой является выход значения индексного выражения за допустимые границы, указанные при объявлении массива. Если в ка

Библиографический список
1. Основы информатики: Учеб. пособие для вузов / А.Н. Морозевич, Н.Н. Говядинова, В.Г. Левашенко и др.; Под ред. А.Н. Морозевича. - Минск: Новое знание, 2001. - 544с., ил.

Предметный указатель
«абак», 167 array, 276 Break, 272 CD-ROM, 161 const, 298 Continue, 273

ИНФОРМАЦИИ

ПОНЯТИЕ ИНФОРМАЦИИ. ВИДЫ и свойства

Сообщения и сигналы. Кодирование и квантование сигналов.

Методы измерения количества и качества информации.

Понятие информации. Виды и свойства информации.

Лекция 3. ОСНОВНЫЕ ПОНЯТИЯ ИНФОРМАТИКИ

Ключевые слова : информация; виды информации; свойства информации; меры информации; количество информации; объем данных; энтропия; тезаурус пользователя; качество информации; показатели качества информации; сообщение; источник информации; получатель информации; канал связи; носитель информации; параметр сигнала; кодирование; декодирование; дискретизация; квантование.

Литература: 1. Информатика. Базовый курс / Симонович С.В. и др. –

СПб.: Издательство «Питер», 1999.

2. Могилев А.В. и др. Информатика: Учеб. пособие для

студ. пед. вузов / А.В.Могилев, Н.И.Пак, Е.К.Хеннер; Под

ред. Е.К.Хеннера. – 2-е изд., стер. – М.: Изд. центр «Ака-

демия», 2001.

Дисциплина «Информатика» неразрывно связана с понятием информация , которое является одним из фундаментальных в современной науке вообще и базовым для изучаемой нами информатики. Это понятие неоднократно звучало при изложении вводной лекции. С ним мы сталкиваемся ежедневно. Информацию наряду с веществом и энергией рассматривают в качестве важнейшей сущности мира, в котором мы живем. Тем не менее, общепризнанного и строгого определения понятия информациядо сих пор нет. В разных дисциплинах в понятие информация вкладывают разный смысл. При этом типична ситуация, когда понятие об информации, введенное в рамках одной научной дисциплины, может опровергаться конкретными примерами и фактами, полученными в рамках другой. Например, представление об информации как о совокупности данных, повышающих уровень знаний об объективной реальности окружающего мира, характерное для естественных наук, может быть опровергнуто в рамках социальных наук.

В простейшем бытовом понимании с термином «информация » обычно ассоциируются некоторые сведения , данные , знания и т. п.

Словоинформация (латинское informatio ) означает разъяснение, осведомление, изложение . В общем случае под информацией понимают все те сведения, которые уменьшают степень неопределенности нашего знания о конкретном объекте .

Сама по себе информация может быть отнесена к категории абстрактных понятий, но ряд ее особенностей приближает ее к материальным объек­там . Так, информацию можнополучить, записать, удалить, передать ; информация не может возникнуть из ничего . С позиции материалистической философии информация есть отражение реального мира . Однако при распространении информации прояв­ляется такое ее свойство, которое не присуще материальным объектам: при передаче информации из одной системы в другую количество информации в передающей системе не уменьшается, хотя в принимающей системе оно обычно увеличивается . Если бы информация не обладала этим свойством, то преподаватель, читая лек­цию студентам, терял бы информацию и становился неучем.



Итак, информация не материальна, но она является свойством материи и не может существовать без своего материального носителя – средства переноса информации в пространстве и во времени. Носителем информации может быть как непосредственно наблюдаемый физический объект, так и некоторый энергетический суб­страт. В последнем случае информация представлена в видесигналов : световых, звуковых, электрических и т. д. При отображении на носителе информация коди­руется, то есть ей ставится в соответствие форма, цвет, структура и другие пара­метры элементов носителя.

Часто информацию отождествляют с данными . Однако это неправильно. Одни и те же данные могут в момент потребления поставлять разную информацию в зависимости от степени адекватности взаимодействующих с ними методов. Например, для человека, не владеющего китайским языком, письмо, полученное из Пекина, дает только ту информацию, которую можно получить методом наблюдения (количество страниц, цвет и качество бумаги, количество иероглифов и их начертание и т.п.). Все это информация, но не вся, заключенная в письме. Использование более адекватных методов (например, привлечение переводчика) даст иную информацию.

Обратим внимание на то, что данные являются объективными , поскольку это результат регистрации объективно существовавших сигналов, вызванных изменениями в материальных телах или полях. В то же время, методы являются субъективными . В основе искусственных методов лежат алгоритмы (упорядоченные последовательности команд), составленные и подготовленные людьми (субъектами). В основе естественных методов лежат биологические свойства субъектов информационного процесса. Следовательно, информация возникает и существует в момент диалектического взаимодействия объективных данных и субъективных методов .

Сформулируем и в дальнейшем будем использовать следующее определение информации:

информация – это продукт взаимодействия данных и адекватных им методов .

Информация не является статичным объектом – она динамически меняется и существует только в момент взаимодействия данных и методов их обработки. Все остальное время она пребывает в состоянии данных. Таким образом, информация существует только в момент протекания информационного процесса .

Введение

Глава 1. Равномерное квантование мгновенных значений сигнала

Глава 2. Неравномерное квантование мгновенных значений

Глава 3. Оптимальное квантование

Глава 4. Адаптивное квантование

4.1 Вводные замечания

4.2 Адаптация по входному сигналу

4.3 Адаптация по выходному сигналу

Глава 5. Теория разностного кодирования

Заключение

Список литературы

Введение

Методы рационального кодирования предназначены для сокращения избыточности сообщений в условиях априорной неопределенности относительно статистических характеристик сигналов . Т.е. в условиях, когда сигнал является нестационарным, что часто встречается на практике, или когда неизвестны статистические характеристики этого сигнала. Под рациональным кодированием понимают такое кодирование, при котором измерительная информация представленная в дискретной форме требует минимальное количество символов при заданной верности, т.е. отношении сигнал – шум квантования. Требование рационального кодирования сообщений обусловлены тем, обстоятельством, что в случае нерационального кодирования на первом этапе избыточность сохраняется и на последнем. В случае применения корректирующих (помехоустойчивых) кодов избыточность сообщений еще более возрастает. Процедуры рационального кодирования источника сообщений классифицируются по их возможности менять параметры или структуру кодирующего устройства для обеспечения сжатия данных. Классификация имеет вид (рисунок 1).

Рисунок 1

Фиксированная процедура имеет заданную структуру, которая остается неизменной при любых входных воздействиях. Это не позволяет оптимизировать процесс обработки данных при разных сообщениях на входах квантователя (можно оптимизировать для класса разных сообщений), но допускает простую аппаратную реализацию алгоритма. Пример фиксированной процедуры -

-квантователь.

Параметрическая адаптивная процедура чувствительна к статистике сообщений и изменяется в соответствии с выбранным критерием свои параметры. Примерами такой процедуры являются адаптивная и разностная ИКМ.

Непараметрическая адаптивная процедура сжатия данных с изменением структуры алгоритмов сообщений является наиболее перспективной с точки зрения эффективности кодирования источника нестационарных сообщений с изменяющимися статистическими характеристиками. В этом случае меняются не только параметры, но и структура алгоритма кодирования. К таким процедурам относят алгоритм адаптивно - разностной ИКМ с перестройкой структуры фильтра – предсказателя.


Глава 1. Равномерное квантование мгновенных значений сигнала

Предположим, что в результате дискретизации сигнала получается последовательность непрерывных величин

для передачи по цифровым каналам связи. Каждый отсчет необходимо проквантовать до конечного множества значений. Целесообразно разделять процесс представления последовательности множеством двоичных символов на два этапа: квантование, результатом которого является последовательность величин = и кодирование, когда последовательности величин ставится в соответствие кодовое слово , т.е. этот процесс можно представить в виде (рисунок 2).

Рисунок 2

Обычно для кодирования квантованных отсчетов используют двоичную последовательность. С помощью B-разрядного кодового слова можно представить

уровней квантования. Скорость передачи информации в этом случае: , (1)
- частота дискретизации, которая выбирается исходя из способа восстановления сигнала в приемнике, - число бит на отсчет сигнала. - const, то единственный путь уменьшения скорости передачи состоит в сокращении числа двоичных единиц на отсчет сигнала. Определим как зависит отношение сигнал – шум квантования от разрядности кодового слова .

Рассмотрим различные способы квантования сигнала. Пусть

(2)

и функция плотности вероятности сигнала симметрична. Тогда

. (3)

Для речевого сигнала с функцией плотности вероятностей (ФПВ) Лапласа только 0,55% отсчетов сигнала окажутся вне динамического диапазона:

. (4)

В случае равномерного квантования:

. (5)

Рассмотрим характеристики равномерного квантователя в случае восьми уровневого квантования.

Первый случай. Квантователь с усечением (рисунок 3) имеет одинаковое количество положительных и отрицательных уровней, но нет нулевого.

Рисунок 3

Второй случай. Квантователь с округлением (рисунок 4) имеет на один отрицательный уровень больше, но есть нулевой уровень.

Рисунок 4

Для квантователя с усечением при предположении, что первый разряд знаковый, квантованное значение равно:

, (6)

а для квантователя с округлением:

. (7) . (8)

Представим квантованный сигнал в виде:

(9) - ошибка или шум квантования, .

Для изучения эффектов квантования предполагают, что шум квантования обладает следующими статистическими свойствами:

1. Является стационарным белым шумом.

2. Некоррелирован со входным сигналом.

3. Распределение шума равномерное в пределах

.

Для этой статистической модели определим отношение сигнал – шум квантования:

, (10)

где M – оператор усреднения.