Способы формирования сигналов. Способы модуляции и формирование групповых сигналов аналоговых и цифровых ссс

Процесс формирования сигнала в радиоканале осуществляется в несколько этапов:

Аналого-цифровое преобразование;

Кодирование речи;

Канальное кодирование;

Модуляция.

В процессе аналого-цифрового преобразования аналоговый речевой сигнал, ограниченный полосой частот от 300 до 3400 Гц, за счет дискретизации (частота дискретизации равняется 8 кГц) превращается в амплитудно-импульсно-модулированный сигнал (АИМ). Дальше каждая из 8 дискрет АИМ-сигнала кодируется разрядным двоичным кодом, т.е. АИМ-сигнал превращается в ИКМ-сигнал. В результате на выходе аналого-цифрового преобразователя (АЦП) формируется поток, скорость которого равняется 64 кбит/с.

Из выхода АЦП оцифрованный речевой сигнал поступает на кодер речи. Кодирование речи в стандарте GSM осуществляется в рамках системы прерывчатой передачи языка (DTX), что обеспечивает включение в работу передатчика только на время разговора и отключает его в паузах и в конце разговора. Одним из основных заданий кодирования речи есть сжатие речевого сигнала с целью снижения скорости передачи. Применение при кодировании в стандарте GSM вокодерных методов на основе метода линейного предесказания (ЛП) разрешает снизить скорость передачи с 64 до 13 кбит/с. Кодированию подвергаются отрезки речевого сигнала по 20мс. За этот интервал времени такие параметры речевого сигнала, как период основного тона, характер возбуждения (громкий или звонкий согласный звук в сопоставлении с глухими звуками), коэффициент усиления остаются постоянными.

В стандарте GSM кодирование осуществляется за методом RPE-LTP (линейное предсказание с возбуждением регулярной последовательностью импульсов и долгосрочным предсказанием). Сущность метода заключается в том, что для предсказания текущей выборки используются данные с предыдущих выборок (дифференциальная ИКМ). Каждая выборка при кодировании представляется линейной комбинацией предыдущих выборок и описывается в виде коэффициентов этой линейной комбинации и закодированной разностью предсказываемой и действительной выборками. В результате такого кодирования в интервале 20мс формируется 260 бит, за счет чего скорость передачи снижается к кбит/с. Таким образом, кодер речи обеспечивает сжатие речевого сигнала почти в 5 раз (64/13=4,92).

В состав входящей информации кодера речевого сигнала, объемом 260 бит, входят:

Параметры фильтра кратковременного предсказания(36 бит);

Параметры фильтра долгосрочного предсказания (36 бит);

Параметры сигнала возбуждения (188 бит).

Канальное кодирование обеспечивает защиту от ошибок переданной информации. В стандарте GSM 260 бит информации в интервале 20мс-сегмента речи делится на 2 класса: класс 1 и класс 2. Класс 1 в свою очередь делится на два подкласса: подкласс 1а - 50 бит наиболее чувствительных, и подкласс 1b - 132 бита, умеренно чувствительных к ошибкам. К классу 2 относятся 78 бит, наименее чувствительных к ошибкам. Структурная схема канального кодирования приведена на рис.1.5.

Информация подкласса 1а кодируется циклическим кодом (53, 50). При выявлении ошибки вся выборка откидывается и заменяется предыдущей. Закодированные 53 бита подкласса 1а, 132 бита подкласса 1b и 4 дополнительных нулевых бита (всего 189 бит) подаются на сверточный кодер (2, 1, 5), скорость кодирования которого и длина кодового ограничения . Формирующие полиномы сверточного кодера , . После сверточного кодирования 378 бит вместе с 78 битами класса 2 составляют 456 бит, в результате чего скорость передачи становится равной кбит/с.

После сверточного кодирования 456 бит подвергаются блочно-диагональному перемеживанию, которое уменьшает влияние групповых ошибок (они превращаются у ошибки малой кратности, которые исправляются при декодировании).

Рисунок 1.5 - Структурная схема канального кодирования в стандарте GSM

После перемеживания начальная последовательность из 456 бит делится на восемь 57- битовых блоков, так как в каждом слоте размещается два 57- битовых блока (114 бит). Длина слота канала трафика с учетом добавления вспомогательной и служебной информации составляет 156,25 бит. Поскольку информация одного 20- милисекундного сегмента речи занимает по одному слоту в четырех последовательных кадрах, поэтому скорость потока цифровой информации представляет (4х156,25)/20х10 -3 = 625/20х10 -3 = 31,25 кбит/с.

Эта информация (а именно 4x156,25 = 625 бит) сжимается во времени в 8 раз, так что на протяжении одного кадра продолжительностью 4,615 мс в одном частотном канале передается информация восьми временных слотов, в результате чего скорость передачи цифровой последовательности возрастает к (8x31,25) = 250 кбит/с.

На каждые 12 кадров канала трафика, что переносят речевую информацию (в мультикадре канала трафика информационными речевыми кадрами являются 0-11 и 13-25, в 12-ом кадре передается канал управления SACCH, а 26-ый кадр - пустой, резервный) прибавляется по одном кадру с информацией управления канала SACCH, который имеет скорость 20,833 кбит/с. Таким образом, скорость информационной битовой последовательности (речевого сигнала) на выходе кодера канала представляет:250 + 20,833 = 270,833 кбит/с.

Выше была рассмотрена процедура работы кодера канала только по помехоустойчивому кодированию речевого сигнала. Информация же каналов управления подвергается блочному и сверточному кодированию в полном объеме.

Так, для кодирования информации каналов: медленного соединенного канала управления SACCH; быстрого соединенного канала управления FACCH; канала вызова РСН; канала разрешения доступа AGCH; выделенных закрепленных каналов управления SDCCH используются блочный кодер (n, k) (224, 184), сверточный кодер (n, k, K) (2, 1, 5), а также схема перемеживания, аналогичная схеме перемеживания речевого канала

В каналах синхронизации SCH и случайного доступа RACH используются другие схемы блочного кодирования, а также сверточные кодеры (2, 1, 5), которые отличаются от сверточных кодеров вышеуказанных каналов управления.

При передаче компьютерных данных используются более сложные схемы сверточного кодирования и перемеживания, что обеспечивают соответственно и более высокое качество передачи информации.

Исходные сигналы канального кодера поступают на модулятор, задачам которого являются перенесения цифрового сигнала на несущую частоту, т.е. модуляция радиосигнала цифровым видеосигналом.

В стандарте GSM используется гауссова модуляция с минимальным частотным сдвигом (GMSK). При MSK-манипуляции несущая частота дискретно, через интервалы времени, кратные продолжительности информационного бита (T C), принимает одно из двух значений (постоянных на протяжении биту) – или , где – несущая частота радиоканала, – частота (скорость передачи) информационной битовой последовательности. Разнос частот – минимально возможный, при котором обеспечивается ортогональность колебаний с частотами и на интервале продолжительностью, которая равняется одному биту (Тс). При этом, за время Тс между колебаниями частот и набегает разность фаз, которая равняется . Иначе говоря, формирование MSK радиосигнала осуществляется таким образом, который на интервале одного информационного бита фаза несущей изменяется на . Беспрерывное изменение фазы синусоидального сигнала дает в результате частотную модуляцию с дискретным изменением частоты.

Наименование «гауссова» манипуляция объясняется тем, что последовательность информационных бит на модулятор поступает через фильтр нижних частот (ФНЧ) с гауссовою амплитудно-частотной характеристикой. Применение гауссового фильтра разрешает уменьшить полосу частот излучаемого радиосигнала. Для GMSK модуляции произведение полосы фильтра (F) на продолжительность информационного бита () представляет величину.

Метод MSK логически рассматривать как метод квадратурной фазовой манипуляции (двукратной относительной фазовой манипуляции (QPSK)), в которой прямоугольные импульсы, которые модулируют продолжительностью заменены полуволновыми отрезками синусоид или косинусоид. На рис.1.6 приведена схема модулятора, временные диаграммы, которые иллюстрируют процесс формирования GMSK сигнала.

Сигнал определяется как напряжение или ток, который может быть передан как сообщение или как информация. По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного илипеременного тока, цифровой или импульсный. Тем не менее, принято делать различие между аналоговыми и цифровыми сигналами.

Цифровым сигналом называется сигнал, определённым образом обработанный и преобразованный в цифры. Обычно эти цифровые сигналы связаны с реальными аналоговыми сигналами, но иногда между ними и нет связи. В качестве примера можно привести передачу данных в локальных вычислительных сетях (LAN) или в других высокоскоростных сетях.

В случае цифровой обработки сигнала (ЦОС) аналоговый сигнал преобразуется в двоичную форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается арифметическим цифровым сигнальным процессором (DSP). После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).

Другой ключевой концепцией в определении сигнала является тот факт, что сигнал всегда несет некоторую информацию. Это ведет нас к ключевой проблеме обработки физических аналоговых сигналов — проблеме извлечения информации.

Цели обработки сигналов.

Главная цель обработки сигналов заключается в необходимости получения содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов.

Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами. В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале.

В частности, изменение формата сигнала происходит при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае используются аналоговые методы, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию СВЧ диапазона, коаксиальный или оптоволоконный кабель.

В случае цифровой связи аналоговая звуковая информация сначала преобразуется в цифровую с использованием АЦП. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи (как в ИКМ-системе).

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции (ADPCM) широко используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах мобильной связи, системах записи звука MPEG, в телевидении высокой четкости (HDTV).

Промышленные системы сбора данных и системы управления используют информацию, полученную от датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь, непосредственно управляют процессом. Обратите внимание, что эти системы требуют наличия как АЦП и ЦАП, так и датчиков, устройств нормализации сигнала (signal conditioners) и DSP (или микроконтроллеров).

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью является восстановление сигнала. Такие методы, как фильтрация, автокорреляция, свертка и т.д., часто используются для выполнения этой задачи и в аналоговой, и в цифровой областях.

ЦЕЛИ ОБРАБОТКИ СИГНАЛОВ
  • Извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие,временные соотношения)
  • Преобразование формата сигнала (телефония с разделением каналов FDMA, TDMA, CDMA)
  • Сжатие данных (модемы, сотовые телефоны, телевидение HDTV, сжатие MPEG)
  • Формирование сигналов обратной связи (управление промышленными процессами)
  • Выделение сигнала из шума (фильтрация, автокорреляция, свертка)
  • Выделение и сохранение сигнала в цифровом виде для последующей обработки (БПФ)

Формирование сигналов

В большинстве приведенных ситуаций (связанных с использованием DSP-технологий), необходимы как АЦП, так и ЦАП. Тем не менее, в ряде случаев требуется только ЦАП, когда аналоговые сигналы могут быть непосредственно сгенерированы на основе DSP и ЦАП. Хорошим примером являются дисплеи с разверткой видеоизображения, в которых сгенерированный в цифровой форме сигнал управляет видеоизображением или блоком RAMDAC (преобразователем массива пиксельных значений из цифровой в аналоговую форму).

Другой пример — это искусственно синтезируемые музыка и речь. В действительности, при генерации физических аналоговых сигналов с использованием только цифровых методов полагаются на информацию, предварительно полученную из источников подобных физических аналоговых сигналов. В системах отображения данные на дисплее должны донести соответствующую информацию оператору. При разработке звуковых систем задаются статистическими свойствами генерируемых звуков, которые были предварительно определены с помощью широкого использования методов ЦОС (источник звука, микрофон, предварительный усилитель, АЦП и т.д.).

Методы и технологии обработки сигналов

Сигналы могут быть обработаны с использованием аналоговых методов (аналоговой обработки сигналов, или ASP), цифровых методов (цифровой обработки сигналов, или DSP) или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов, или MSP). В некоторых случаях выбор методов ясен, в других случаях нет ясности в выборе и принятие окончательного решения основывается на определенных соображениях.

Что касается DSP, то главное отличие его от традиционного компьютерного анализа данных заключается в высокой скорости и эффективности выполнения сложных функций цифровой обработки, таких как фильтрация, анализ с использованием и сжатие данных в реальном масштабе времени.

Термин "комбинированная обработка сигналов" подразумевает, что системой выполняется и аналоговая, и цифровая обработка. Такая система может быть реализована в виде печатной платы, гибридной интегральной схемы (ИС) или отдельного кристалла с интегрированными элементами. АЦП и ЦАП рассматриваются как устройства комбинированной обработки сигналов, так как в каждом из них реализованы и аналоговые, и цифровые функции.

Недавние успехи технологии создания микросхем с очень высокой степенью интеграции (VLSI) позволяют осуществлять комплексную (цифровую и аналоговую) обработку на одном кристалле. Сама природа ЦОС подразумевает, что эти функции могут быть выполнены в режиме реального масштаба времени.

Сравнение аналоговой и цифровой обработки сигналов

Сегодняшний инженер стоит перед выбором надлежащей комбинации аналоговых и цифровых методов для решения задачи обработки сигналов. Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами.

Некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов как аналоговым так и цифровым методом. Цепи нормализации сигнала — это аналоговые процессоры, выполняющие такие функции как усиление, накопление (в измерительных и предварительных (буферных) усилителях), обнаружение сигнала на фоне шума (высокоточными усилителями синфазного сигнала, эквалайзерами и линейными приемниками), динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления) и фильтрация (пассивная или активная).

Несколько методов реализации процесса обработки сигналов показано на рисунке 1. В верхней области рисунка изображен чисто аналоговый подход. В остальных областях изображена реализация DSP. Обратите внимание, что, как только выбрана DSP технология, следующим решением должно быть определение местоположения АЦП в тракте обработки сигнала.

ОБРАБОТКА АНАЛОГОВЫХ И ЦИФРОВЫХ СИГНАЛОВ

Рисунок 1. Способы обработки сигналов

Вообще, поскольку АЦП перемещен ближе к датчику, большая часть обработки аналогового сигнала теперь производится АЦП. Увеличение возможностей АЦП может выражаться в увеличении частоты дискретизации, расширении динамического диапазона, повышении разрешающей способности, отсечении входного шума, использовании входной фильтрации и программируемых усилителей (PGA), наличии источников опорного напряжения на кристалле и т.д. Все упомянутые дополнения повышают функциональный уровень и упрощают систему.

При наличии современных технологий производства ЦАП и АЦП с высокими частотами дискретизации и разрешающими способностями существенный прогресс достигнут в интеграции все большего числа цепей непосредственно в АЦП /ЦАП.

В сфере измерений, например, существуют 24-битные АЦП со встроенными программируемыми усилителями (PGA), которые позволяют оцифровывать полномасштабные мостовые сигналы 10 mV непосредственно, без последующей нормализации (например серия AD773x).

На голосовых и звуковых частотах распространены комплексные устройства кодирования-декодирования&nbp;— кодеки (Analog Front End, AFE), которые имеют встроенную в микросхему аналоговую схему, удовлетворяющую минимуму требований к внешним компонентам нормализации (AD1819B и AD73322).

Существуют также видео-кодеки (AFE) для таких задач, как обработка изображения с помощью ПЗС (CCD), и другие (например, серии AD9814, AD9816, и AD984X).

Пример реализации

В качестве примера использования DSP сравним аналоговый и цифровой фильтры низкой частоты (ФНЧ), каждый с частотой среза 1 кГц.

Цифровой фильтр реализован в виде типовой цифровой системы, показанной на рисунок 2. Обратите внимание, что в диаграмме принято несколько неявных допущений. Во -первых, чтобы точно обработать сигнал, принимается, что тракт АЦП /ЦАП обладает достаточными значениями частоты дискретизации, разрешающей способности и динамического диапазона. Во -вторых, для того, чтобы закончить все свои вычисления в пределах интервала дискретизации (1/f s), устройство ЦОС должно иметь достаточное быстродействие. В -третьих, на входе АЦП и выходе ЦАП сохраняется потребность в аналоговых фильтрах ограничения и восстановления спектра сигнала (anti-aliasing filter и anti-imaging filter), хотя требования к их производительности невелики. Приняв эти допущения, можно сравнить цифровой и аналоговый фильтры.



Рисунок 2. Структурная схема цифрового фильтра

Требуемая частота среза обоих фильтров — 1 кГц. Аналоговое преобразование реализуется первого рода шестого порядка (характеризуется наличием пульсаций коэффициента передачив полосе пропускания и отсутствием пульсаций вне полосы пропускания). Его характеристики представлены на рисунке 2. На практике этот фильтр может быть представлен тремя фильтрами второго порядка, каждый из которых построен на операционном усилителе и нескольких и конденсаторах. С помощью современных систем автоматизированного проектирования (САПР) фильтров создать фильтр шестого порядка достаточно просто, но чтобы удовлетворить техническим требованиям по неравномерности характеристики 0,5 дБ, требуется точный подбор компонентов.

Представленный же на рисунке 2 цифровой КИХ-фильтр со 129 коэффициентами имеет неравномерность характеристики всего 0,002 дБ в полосе пропускания, линейную фазовую характеристику и намного более крутой спад. На практике такие характеристики невозможно реализовать с использованием аналоговых методов. Другое очевидное преимущество схемы состоит в том, что цифровой фильтр не требует подбора компонентов и не подвержен дрейфу параметров, так как частота синхронизации фильтра стабилизирована кварцевым резонатором. Фильтр со 129 коэффициентами требует 129 операций умножения с накоплением (MAC) для вычисления выходного отсчёта. Эти вычисления должны быть закончены в пределах интервала дискретизации 1/fs, чтобы обеспечить работу в реальном масштабе времени. В этом примере частота дискретизации равна 10 кГц, поэтому для обработки достаточно 100 мкс, если не требуется производить существенных дополнительных вычислений. Семейство DSP ADSP-21xx может закончить весь процесс умножения с накоплением (и другие функции, необходимые для реализации фильтра) за один командный цикл. Поэтому фильтр со 129 коэффициентами требует быстродействия более 129/100 мкс = 1,3 миллиона операций с секунду (MIPS). Существующие DSP имеют намного большее быстродействие и, таким образом, не являются ограничивающим фактором для этих приложений. Быстродействие серии 16-разрядных ADSP-218x с фиксированной точкой достигает 75MIPS. В листинге 1 приведен ассемблерный код, реализующий фильтр на DSP процессорах семейства ADSP-21xx. Обратите внимание, что фактические строки исполняемого кода помечены стрелками; остальное — это комментарии.


Рисунок 3. аналогового и цифрового фильтров

Конечно, на практике имеется много других факторов, рассматриваемых при сравнительной оценке аналоговых и цифровых фильтров или аналоговых и цифровых методов обработки сигнала вообще. В современных системах обработки сигналов комбинируются аналоговые и цифровые методы реализации желаемой функции и используются преимущества лучших методов, как аналоговых, так и цифровых.

ПРОГРАММА НА АССЕМБЛЕРЕ:
FIR ФИЛЬТР ДЛЯ ADSP-21XX (ОДИНАРНАЯ ТОЧНОСТЬ)

MODULE fir_sub; { Подпрограмма КИХ фильтра Параметры вызова подпрограммы I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра L0 = Длина фильтра (N) L4 = Длина фильтра (N) M1,M5 = 1 CNTR = Длина фильтра - 1 (N-1) Возвращаемые значения MR1 = Результат суммирования (округлённый и ограниченный) I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра Изменяемые регистры MX0,MY0,MR Время работы (N - 1) + 6 cycles = N + 5 cycles Все коэффициенты записаны в формате 1.15 } .ENTRY fir; fir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5) CNTR = N-1; DO convolution UNTIL CE; convolution: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5); MR=MR+MX0*MY0(RND); IF MV SAT MR; RTS; .ENDMOD; ОБРАБОТКА СИГНАЛОВ В РЕАЛЬНОМ ВРЕМЕНИ

  • Цифровая обработка сигналов;
    • Ширина спектра обрабатываемого сигнала ограничена частотой дискретизации АЦП/ЦАП
      • Помните о критерии Найквиста и теореме Котельникова
    • ограничен разрядностью АЦП /ЦАП
    • Производительность процессора DSP ограничивает объем обработки сигнала, так как:
      • Для работы в реальном масштабе времени все вычисления, производимые сигнальным процессором, должны быть закончены в течение интервала дискретизации, равного 1/f s
  • Не забывайте об аналоговой обработке сигнала
    • высокочастотной /радиочастотной фильтрации, модуляции, демодуляции
    • аналоговых ограничивающих и восстанавливающих спектр фильтрах (обычно ФНЧ) для АЦП и ЦАП
    • там, где диктуют здравый смысл и стоимость реализации

Литература:

Вместе со статьей "Виды сигналов" читают:

Изобретение относится к радиотехнике, в частности к радиопередающим устройствам, применяемым на линиях многоканальной цифровой связи с квадратурной амплитудной манипуляцией, может быть использовано в области цифрового радиовещания и цифрового телевидения. Достигаемый технический результат - снижение потерь помехоустойчивости в условиях плохой помеховой обстановки. В способе формирования сигналов квадратурной амплитудной модуляции формирование несущей частоты осуществляется путем модуляции и суммирования двух квадратурных сигналов: sin(wt) и cos(wt) по двум параллельно работающим каналам, в каждом из которых производится фазоамплитудная модуляция с помощью управляемых коммутаторов и делителей напряжения, при этом деление напряжения несущего колебания в каждом из двух квадратурных каналов формирователя сигналов квадратурной амплитудной модуляции синхронно осуществляется с переменным коэффициентом в зависимости от соотношения сигнал-шум на входе демодулятора приемника, полученного по обратному каналу. 4 ил., 2 табл.

Рисунки к патенту РФ 2365050

Изобретение относится к радиотехнике, в частности к радиопередающим устройствам, применяемым на линиях многоканальной цифровой связи с квадратурной амплитудной манипуляцией, а также может быть использовано в области цифрового радиовещания и цифрового телевидения.

Известны способы формирования сигналов относительной и квадратурной фазовой манипуляций (ОФМ, КФМ), в которых для уменьшения спектра передаваемого фазоманипулированного сигнала используется плавный фазовый переход .

Также известны способы формирования сигналов квадратурной амплитудной модуляции (КАМ, QAM), в которых шестнадцатеричный сигнал КАМ (КАМ-16) на передачу формируется в двух квадратурных ветвях (синфазная или синусная и квадратурная или косинусная составляющие), в каждой из которых используется способ формирования сигналов КФМ .

Однако известные аналоги обладают относительно низкой помехоустойчивостью за счет строгого классического построения сигнальной конструкции и ввиду этого невозможностью разделения потока всех бит, переносимых сигналом КАМ на подпотоки по приоритетам , обладающие различной помехоустойчивостью, что очень важно при достаточно плохой помеховой обстановке (т.е. при низких значениях отношений сигнал-шум на входе демодулятора КАМ, что особенно актуально и прогрессивно в современных системах с турбокодированием ).

Наиболее близким техническим решением к данному изобретению является способ формирования сигналов КАМ, в котором формирование несущей получается путем модуляции и суммирования двух квадратурных сигналов: sin(wt) и cos(wt). Способ формирования содержит два параллельно работающих канала, в каждом из которых производится фазоамплитудная манипуляция, общий задающий генератор, фазовращатели и управляемые коммутаторы с делителями напряжения для получения четырехуровневого сигнала КАМ с шестнадцатью сигнальными точками (КАМ-16)

При такой совокупности элементов и связей достигается повышение частотно-энергетической эффективности использования дискретных каналов линий многоканальной электросвязи .

Недостаток известного способа формирования сигналов квадратурной амплитудной модуляции - потери помехоустойчивости переданной информации в условиях наиболее плохой помеховой обстановки как с введением, так и без введения приоритетности в передаче сообщений нескольких пользователей.

Целью изобретения является снижение потерь помехоустойчивости в условиях плохой помеховой обстановки за счет оптимального построения сигналов шестнадцатеричной квадратурной модуляции (КАМ-16) как с разбиением, так и без разбиения общего переносимого потока бит на подпотоки по приоритетности.

Указанная цель достигается тем, что деление напряжения несущего колебания в каждом из двух квадратурных каналов формирователя сигналов квадратурной амплитудной модуляции синхронно осуществляется с переменным коэффициентом в зависимости от соотношения сигнал-шум на входе демодулятора приемника, полученного по обратному каналу.

Перечисленная новая совокупность существенных признаков (отличительный признак) за счет введения изменяемого (заранее известного и точно посчитанного) в период наиболее плохой помеховой обстановки коэффициента деления напряжения квадратурных несущих позволяет обеспечить возможность снижения потерь помехоустойчивости информации нескольких пользователей при введении приоритетности сообщений в условиях достаточно низких значений соотношения сигнал-шум (сигнал-помеха) на входе демодулятора.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие изобретения условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

Заявляемый способ поясняется чертежами, графиками и таблицами, на которых показаны:

на фиг.1 - блок-схема устройства формирования сигналов квадратурной амплитудной модуляции;

на фиг.2 - пространство сигналов классической КАМ-16:

а) фиксированные относительные значения амплитуд модулированных сигналов, находящихся в квадратуре;

б) фиксированные относительные значения амплитуд и фаз несущей на выходе модулятора КАМ-16;

на фиг.3 - пространство сигналов иерархической КАМ-16 при параметре модуляции =2;

на фиг.4 - графики зависимости средней вероятности ошибки от параметра модуляции (коэффициента деления напряжения квадратурных несущих):

а) зависимость вероятности ошибки в приеме первого (второго), третьего (четвертого) битов и средней на бит вероятности ошибки при классической КАМ-16;

б) зависимость вероятности ошибки в приеме первого (второго), третьего (четвертого) битов и средней на бит вероятности ошибки при оптимальной иерархической КАМ-16;

На фиг.5 приведены точные значения параметров модуляции (коэффициентов деления напряжения) для различных значений сигнал/шум на входе приемника и энергетические выигрыши (выигрыши в помехоустойчивости) оптимальной КАМ-16 по сравнению с известными иерархическими и классически аналогичными сигналами.

Устройство формирования сигналов квадратурной амплитудной модуляции, показанное на фиг.1 работает следующим образом.

Формирователь КАМ-16 состоит из двух параллельно работающих каналов, в одном из которых производится фазоамплитудная манипуляция сигнала sinwt (канал I), во втором фазоамплитудная манипуляция сигнала coswt (канал Q). Указанные сигналы получаются от общего задающего генератора 1, причем сигнал coswt получается путем сдвига фазы сигнала sinwt на 90° с помощью фазовращателя (0°/90°) 2. Манипуляция фаз сигналов I и Q производится с помощью коммутаторов 5 и 6, на первый вход которых подается сигнал без сдвига фазы, а на второй вход - сигналы со сдвигом по фазе на 180° с выходов фазовращателей 3 и 4. Управление коммутаторами 5 и 6 производится кодовыми комбинациями Ik и Qk, подаваемыми на информационные входы фазоамплитудных манипуляторов. В результате такой модуляции векторы сигналов I и Q будут принимать фиксированные фазовые положения, показанные на фиг.2а.

Амплитудная модуляция сигналов I и Q производится с помощью коммутаторов 7 и 8 и управляемых делителей напряжения 10 и 11 с переменным коэффициентом деления . Управление коммутаторами 7 и 8 производится соответственно кодовыми комбинациями Еk и Dk, поступающими на информационные входы модулятора. Кодовые комбинации Ik, Qk, Ek и Dk поступают от формирователей импульсов источников сообщений.

После сложения промодулированных сигналов I и Q в сумматоре 9 в системе координат I и Q образуется 16 фиксированных точек - фиг.2б. Векторы, соединяющие начало координат и фиксированные точки, будут определять амплитуду и фазу КАМ-несущей на выходе модулятора для различных кодовых комбинаций.

При поступлении на вторые входы делителей напряжения 10 и 11 по обратному каналу информации об отношении сигнал-шум на входе демодулятора КАМ от 10 -11 до 0.1 на выходе устройства формируется классическая сигнальная конструкция КАМ-16. При изменении помеховой обстановки на линии связи и поступлении на вторые входы делителей напряжения 10 и 11 по обратному каналу информации об отношении сигнал-шум на входе демодулятора КАМ от 0.1 до 0.3 (область применения современных турбо-кодов) на выходе устройства формируется оптимальная сигнальная конструкция КАМ-16 (ОКАМ-16) с лучшими энергетическими характеристиками по сравнению с известными классическими и иерархическими сигналами КАМ.

Точные расчеты помехоустойчивости предлагаемой оптимальной КАМ-16 с оптимальным коэффициентом модуляции

по сравнению с помехоустойчивостью аналогичных известных классических с коэффициентом модуляции =1 (фиг.2б) и иерархических с коэффициентом модуляции =2, 4 (фиг.3) сигналов показали следующее.

1. При значениях требуемой средней вероятности ошибки на бит Р b в интервале от 0.3 до 0.1 минимальная средняя энергия на бит h 2 bc ( опт) при оптимальном построении КАМ-16 меньше h 2 bc ( =1/2) необходимой для известной классической КАМ-16 на величину порядка от 0.46 дБ до 0.17 дБ (помехоустойчивость оптимальной КАМ-16 при фиксированной мощности передатчика выше помехоустойчивости классической КАМ-16), а минимальная пиковая энергия h 2 m ( опт) не превышает h 2 m ( =1/2) В этом случае оптимальный параметр модуляции (нормированный коэффициент делителя напряжения) опт меняется от 1 до 0.39 (фиг.5, табл.5.1).

2. Выигрыш в пикфакторе П1/П2 оптимальной КАМ-16 по сравнению с классической КАМ-16 при минимизации пиковой энергии h 2 m составляет величину от 1.342 для Р b =0.4 до 1.08 для Р b =0.2 (фиг.5, табл.5.2).

3. Для достижения требуемого значения средней вероятности ошибки на бит Р тр =0.3 и Р тр =0.1 необходимое значение минимальной пиковой энергии h 2 m при опт значительно меньше, чем h 2 m при =1/2( =1), а с дальнейшим уменьшением Р тр от 10 -2 до 10 -11 величина опт постепенно приближается к 0.5, т.е. к известному классическому построению сигналов КАМ-16 (фиг.4а, б).

4. Предложенное оптимальное построение сигнальной конструкции (СК) КАМ-16 по сравнению с ранее известными классической и иерархической КАМ-16 требует меньшего h 2 m во всем диапазоне значений требуемой средней вероятности ошибки на бит Р b , что, в свою очередь, ведет к выигрышу в энергетических характеристиках первой по сравнению со вторыми, т.е. к снижению потерь помехоустойчивости (фиг.4в).

5. При значениях требуемой Р b в пределах от 0.1 и выше известная иерархическая КАМ-16 при коэффициенте модуляции =4 выигрывает по необходимому h 2 m у ИКАМ-16 с =2 и у классической КАМ-16, но все эти сигнальные конструкции, в свою очередь, проигрывают предложенной оптимальной СК КАМ-16 по энергетике, т.е. по помехоустойчивости (фиг.4г).

Таким образом, при такой совокупности существенных признаков при формировании шестнадцатеричных сигналов квадратурной амплитудной модуляции обеспечивается снижение потерь помехоустойчивости, вызванных введением оптимального коэффициента модуляции (коэффициента делителя напряжения), в зависимости от получаемого по обратному каналу соотношения сигнал-шум на входе демодулятора КАМ-16 как с разбиением, так и без разбиения общего переносимого потока бит на подпотоки по приоритетности.

2. Патент Российской Федерации № 2205518, МПК Н04L 27/20, 11.12.2001.

3. Скляр, Берн. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр. [Текст] / Пер. с англ. - М.: Радио и связь, 1986. - 544 с.

4. Севальнев Л.А. Передача цифровых телевизионных программ с информационным сжатием данных по спутниковым каналам связи // Теле-Спутник, № 7, 1997. - С.64-69.

5. Севальнев Л.А. Передача сигналов цифрового телевидения с информационным сжатием данных по кабельным линиям связи // Теле-Спутник, № 1(27), 1998. - С.54-67.

6. Бураченко Д.Л. Оптимизация сигнальной конструкции иерархической 16 QAM при двух алгоритмах оптимального приема и двух манипуляционных кодах. [Текст]: статья / Д.Л.Бураченко, В.И.Бобровский, И.В.Тимошин // Материалы 8-й международной НТК. - СПб.: ГУТ им. проф. М.А.Бонч-Бруевича, 2002. - С.17-19.

7. Фриск В.В. Основы теории цепей. [Текст] - М.: ИП РадиоСофт, 2002. - С.34-36.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ формирования сигналов квадратурной амплитудной модуляции с формированием несущей частоты путем модуляции и суммирования двух квадратурных сигналов: sin(wt) и cos(wt) по двум параллельно работающим каналам, в каждом из которых производится фазоамплитудная модуляция с помощью управляемых коммутаторов и делителей напряжения, отличающийся тем, что деление напряжения несущего колебания в каждом из двух квадратурных каналов синхронно осуществляется с переменным коэффициентом в зависимости от соотношения сигнал-шум на входе демодулятора приемника, полученного по обратному каналу при наиболее плохой помеховой обстановке.

При ОМ генерируется в канал связи одна боковая полоса.

ОБП – сложная амплитудно-частотная модуляция.

Если имеется чистый тон: U=U W cosWt

U=U o (1+m cosWt) cos wt=

При ОБП – нет несущего колебания (1-ое слагаемое) и одной боковой полосы.

Для демодуляции такого сигнала, необходимо восстановить несущую. Поэтому при модуляции оставляют немного несущею гармонику

Преимущества: - более эффективное использование мощности передатчика: при m=1 в боковой полосе содержится мощности всего сигнала; при суммарной мощности – в БП – 1/6 мощности.

В однополосном сигнале основная мощность расходуется на создание информационного сигнала;

ОБН модуляция занимает меньшую полосу частот, следовательно, на одном и том же участке можно разместить в 2 раза больше станций (каналов).

Недостатки: - для приема ОБП требуется восстановление несущей, т.е. дополнительная аппаратура в приемнике (гетеродин c f n и фильтр на f n);

Требуется повышенная стабильность частоты гетеродина приемника, и передатчика (10 -6 10 -8);

Формирование ОБП – более сложное, чем АМ. осуществляется на малых уровнях Р, а затем усиливается сформированных ОБП сигнал.

Используется двухполосная модуляция – модуляция без несущей, тоже выгодны энергетически, но полоса больше.

1. Фильтровой метод формирования ОБП.

Сначала подают несущее колебание, т.к. его отфильтровать тяжело, оно мощное и близко расположено к боковой полосе.

Сделать фильтр полосовой, который вырежет ону боковую полосу.

Чтобы убрать несущую из АМС необходимо перемножить 2 сигнала: и на выходе получить сигнал без несущей.

Используют 2 метода получения х:

1) основан на формировании двух модулированных колебаний: (противофазных)

- балансный модулятор.

Для более качественного подавления, используют????? модуляторы (есть мост) должна быть обеспечена идентичность каналов.

2) основан на соотношении у=(a+b) 2 .

Если сумму или разность возвести в квадрат, то получим:

есть постоянная составляющая и гармоника с 2W

нужно возвести в квадрат, используем диоды или ПТ с квадратными характеристиками.

На выходе х двух сигналов.

После подавления несущей, необходима фильтрация одной боковой полосы.

ПФ – кварцевые, LC, пьезоэлеханические.

ПФ должен иметь большую крутизну скатов ЧХ вне полосы.

2-ую БП нужно подавить на 60 дБ.

Кварцевые фильтры можно использовать до 10МГц, но чем меньше частота, тем проще требования к фильтру, поэтому чаще всего делают многоступенчатые преобразования сигнала: в качестве поднесущего колебания 100-150 кГц, в качестве фильтров – электромеханические, требуемая крутизна подавления. Затем этот ОБП сигнал переносится на более высокую частоту.


- на выходе БМ 2 расстояние между полосами 2w 1 – большое, и для подавлении боковой полосы можно использовать LC-фильтры.

Иногда делают тройное преобразование, когда большая частота передатчика.

Поскольку информация заключена в амплитуде сигнала, которая может меняться от 0 до U W max , то усилители должны иметь большой динамический диапазон и хорошую линейность.

В ламповых генераторах работают без сеточных токов, т.к. они имеют нелинейность, здесь недоиспользование АЭ по мощности на 20¸30%, работа в недонапяжённом режиме.

БТ, имеют нелинейные характеристики, их для усиления сигнала применять нежелательно, поэтому чаще используют ПТ.

А для увеличения ОБП разрабатываются приборы для увеличения крутизны, увеличения линейности характеристик.

В ОБП усилителях можно использовать только 2 угла отсечки:q=90 0 , q=180 0 .

2. Синтетический метод формирования ОБП.

Основан на синтезе ОБП сигнала на больших уровнях мощности.

Одновременно осуществляется АМ и ЧМ.

(не должно быть умножителей частоты).

Синтез сигнала осуществляется на требуемой рабочей частоте.

Недостаток: - АМС и ЧМС должны быть синфазными, расхождение приводит к изменению спектра

Так информация заложена в ЧМС, то умножители не применяют.

3. Фазокомпенцационный метод.

Несущее колебание и боковая полоса подавляются в результате подбора фазовых соотношений между АМ колебаниями. Используются несколько колебаний сдвинутых по фазе: 360 0 /n, n³3.

Трехфазная система: (сдвинуты на 120 0).

Достоинство метода: ОБП формируется на рабочей частоте.

Недостаток: - необходимы идентичные АМ (модуляторы).

Необходимо наличие фазовращателей, которые работают от 300 Гц до 3,5 кГц.

4. Фазоразностный метод формирования сигнала.

Устранение несущей колебания с помощью балансных модуляторов.

Изменение включения фазовращателя, можно получить вершину БП.

Точность подавления несущего колебания зависит от фазовых соотношений комбинированных колебаний.

Применяют: (1+3).

5.Фазофильтровой метод

Нижняя боковая полоса.