Реляционная БД (РБД): понятие, основные элементы БД и краткая хар-стика работы с РБД. Структурные элементы реляционной базы данных

РЕЛЯЦИОННАЯ БАЗА ДАННЫХ И ЕЕ ОСОБЕННОСТИ. ВИДЫ СВЯЗЕЙ МЕЖДУ РЕЛЯЦИОННЫМИ ТАБЛИЦАМИ

Реляционная база данных - это совокупность взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного типа. Строка таблицы содержит данные об одном объекте (например, товаре, клиенте), а столбцы таблицы описывают различные характеристики этих объектов - атрибутов (например, наименование, код товара, сведения о клиенте). Записи, т. е. строки таблицы, имеют одинаковую структуру - они состоят из полей, хранящих атрибуты объекта. Каждое поле, т. е. столбец, описывает только одну характеристику объекта и имеет строго определенный тип данных. Все записи имеют одни и те же поля, только в них отображаются различные информационные свойства объекта.

В реляционной базе данных каждая таблица должна иметь первичный ключ - поле или комбинацию полей, которые единственным образом идентифицируют каждую строку таблицы. Если ключ состоит из нескольких полей, он называется составным. Ключ должен быть уникальным и однозначно определять запись. По значению ключа можно отыскать единственную запись. Ключи служат также для упорядочивания информации в БД.

Таблицы реляционной БД должны отвечать требованиям нормализации отношений. Нормализация отношений - это формальный аппарат ограничений на формирование таблиц, который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение базы данных.

Пусть создана таблица Студент, содержащая следу-рэщие поля: № группы, ФИО, № зачетки, дата рождения, шазвание специальности, название факультета. Такая организация хранения информации будет иметь ряд недостатков:

  • дублирование информации (наименование специальности и факультета повторяются для каждого студента), следовательно, увеличится объем БД;
  • процедура обновления информации в таблице затрудняется из-за необходимости редактирования каждой записи таблицы.

Нормализация таблиц предназначена для устранения этих недостатков. Имеется три нормальные формы отношений .

Первая нормальная форма. Реляционная таблица приведена к первой нормальной форме тогда и только тогда, когда ни одна из ее строк не содержит в любом своем поле более одного значения и ни одно из ее ключевых полей не пусто. Так, если из таблицы Студент требуется получать сведения по имени студента, то поле ФИО следует разбить на части Фамилия, Имя, Отчество.

Вторая нормальная форма . Реляционная таблица задана во второй нормальной форме, если она удовлетворяет требованиям первой нормальной формы и все ее поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом. Чтобы привести таблицу ко второй нормальной форме, необходимо определить функциональную зависимость полей. Функциональная зависимость полей - это зависимость, при крторой в экземпляре информационного объекта определенному значению ключевого реквизита соответствует только одно значение описательного реквизита.

Третья нормальная форма. Таблица находится в третьей нормальной форме, если она удовлетворяет требованиям второй нормальной формы, ни одно из ее неключевых полей не зависит функционально от любого другого неключевого поля. Например, в таблице Студент (№ группы, ФИО, № зачетной книжки, Дата рождения, Староста) три поля - № зачетной книжки, № группы, Староста находятся в транзитивной зависимости. № группы зависит от № зачетной книжки, а Староста зависит от № группы. Для устранения транзитивной зависимости необходимо часть полей таблицы Студент перенести в другую таблицу Группа. Таблицы примут следующий вид: Студент (№ группы, ФИО, № зачетной книжки, Дата рождения), Группа (№ группы, Староста).

Над реляционными таблицами возможны следующие операции:

  • Объединение таблиц с одинаковой структурой. Результат- общая таблица: сначала первая, затем вторая (конкатенация).
  • Пересечение таблиц с одинаковой структурой. Результат - выбираются те записи, которые находятся в обеих таблицах.
  • Вычитание таблиц с одинаковой структурой. Результат - выбираются те записи, которых нет в вычитаемом.
  • Выборка (горизонтальное подмножество). Результат - выбираются записи, отвечающие определенным условиям.
  • Проекция (вертикальное подмножество). Результат - отношение, содержащее часть полей из исходных таблиц.
  • Декартово произведение двух таблиц Записи результирующей таблицы получаются путем объединения каждой записи первой таблицы с каждой записью другой таблицы.

Реляционные таблицы могут быть связаны друг с другом, следовательно, данные могут извлекаться одновременно из нескольких таблиц. Таблицы связываются между собой для того, чтобы в конечном счете уменьшить объем БД. Связь каждой пары таблиц обеспечивается при наличии в них одинаковых столбцов.

Существуют следующие типы информационных связей:

  • один-к-одному;
  • один-ко-многим;
  • многие-ко-многим.

Связь один-к-одному предполагает, что одному атрибуту первой таблицы соответствует только один атрибут второй таблицы и наоборот.

Связь один-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы.

Связь многие-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы и наоборот.

Базой данных (БД) называется организованная в соответствии с определенными правилами и поддерживаемая в памяти компьютера совокупность сведений об объектах, процессах, событиях или явлениях, относящихся к некоторой предметной области, теме или задаче. Она организована таким образом, чтобы обеспечить информационные потребности пользователей, а также удобное хранение этой совокупности данных, как в целом, так и любой ее части.

Реляционная база данных представляет собой множество взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного вида. Каждая строка таблицы содержит данные об одном объекте (например, автомобиле, компьютере, клиенте), а столбцы таблицы содержат различные характеристики этих объектов - атрибуты (например, номер двигателя, марка процессора, телефоны фирм или клиентов).

Строки таблицы называются записями. Все записи таблицы имеют одинаковую структуру - они состоят из полей (элементов данных), в которых хранятся атрибуты объекта (рис. 1). Каждое поле записи содержит одну характеристику объекта и представляет собой заданный тип данных (например, текстовая строка, число, дата). Для идентификации записей используется первичный ключ. Первичным ключом называется набор полей таблицы, комбинация значений которых однозначно определяет каждую запись в таблице.

Рис. 1. Названия объектов в таблице

Для работы с данными используются системы управления базами данных (СУБД). Основные функции СУБД:

Определение данных (описание структуры баз данных);

Обработка данных;

Управление данными.

Разработка структуры БД - важнейшая задача, решаемая при проектировании БД. Структура БД (набор, форма и связи ее таблиц) - это одно из основных проектных решений при создании приложений с использованием БД. Созданная разработчиком структура БД описывается на языке определения данных СУБД.

Любая СУБД позволяет выполнять следующие операции с данными:

Добавление записей в таблицы;

Удаление записей из таблицы;

Обновление значений некоторых полей в одной или нескольких записях в таблицах БД;

Поиск одной или нескольких записей, удовлетворяющих заданному условию.

Для выполнения этих операций применяется механизм запросов. Результатом выполнения запросов является либо отобранное по определенным критериям множество записей, либо изменения в таблицах. Запросы к базе формируются на специально созданном для этого языке, который так и называется «язык структурированных запросов» (SQL - Structured Query Language).

Под управлением данными обычно понимают защиту данных от несанкционированного доступа, поддержку многопользовательского режима работы с данными и обеспечение целостности и согласованности данных.

Как правило, любое веб приложение можно разделить на 2 основные части: фронт-энд, где отображается вся информация сайта, и бэк-энд, где данная информация формируется и размещается. В этой статье мы поговорим о том, что такое реляционные базы данных, и как их проектировать.

База данных хранит записи в специально организованном виде, чтобы информацию можно было легко найти и извлечь. Любая БД состоит из одной или нескольких таблиц. Электронная таблица состоит из строк и столбцов. Все строки имеют одинаковые столбцы, а каждый столбец содержит данные. В общем, для лучшего понимания, определимся, что таблицы в БД очень похожи на те, что вы видели в Excel-е.

Табличные данные могут быть вставлены, восстановлены, обновлены и удалены. Для пакета этих операций была создана специальная аббревиатура CRUD (Create-Read-Update-Delete).

Реляционные базы данных - это базы, где вся информация хранится в таблицах, связанных друг с другом специальными отношениями. Эти отношения позволяют нам извлекать и объединять данные из одной или нескольких таблиц с помощью одного запроса.

Но всё это всего лишь слова. Для того чтобы действительно понять, что такое реляционные базы данных, вам нужно больше практиковаться. Давайте же начнём и посмотрим, с какими данными нам предстоит работать.

Шаг 1. Подготовка данных

Для того чтобы нам было с чем работать, я набрал в твиттере запрос “#databases” и сформировал таблицу из 10 записей:

Таблица 1

full_name username text created_at following_username
Boris Hadjur _DreamLead Scootmedia, MetiersInternet
Gunnar Svalander GunnarSvalander klout, zillow
GE Software GEsoftware DayJobDoc, byosko
Adrian Burch adrianburch CindyCrawford, Arjantim
Andy Ryder AndyRyder5 MichaelDell, Yahoo
Andy Ryder AndyRyder5 MichaelDell, Yahoo
Brett Englebert Brett_Englebert
Brett Englebert Brett_Englebert RealSkipBayless, stephenasmith
Nimbus Data Systems NimbusData dellock6, rohitkilam
SSWUG.ORG SSWUGorg drsql, steam_games

В первую очередь, давайте разберёмся с колонками:

Это реальные данные. Если хотите, вы можете их найти и обновить.

Хорошо. Теперь все наши данные находятся в одном месте. Даёт ли это нам возможность легко осуществить поиск по ним? Не совсем. Данная таблица далека от идеала. Во-первых, в некоторых столбцах у нас есть повторяющиеся записи: к примеру, в х “username” и “following_username”. Также колонка “following_username” нарушает правила реляционных моделей, т.к. её в ячейках присутствует более 1 значения (записи разделены запятыми).

К тому же у нас попадаются дубликаты и в строках.

Повторяющиеся данные действительно являются проблемой, т.к. они затрудняют процесс CRUD. К примеру, при поиске по данной таблице на обработку дубликатов будет уходить дополнительное время. К тому же, если пользователь обновит твитт, то нам нужно будет перезаписать все дубликаты.

Решение данной проблемы заключается в разделении Таблицы 1 на несколько таблиц. Давайте примемся за решение первой проблемы, а именно - устранение дубликатов в столбцах.

Шаг 2. Избавляемся от дубликатов в столбцах

Как было оговорено выше, столбцы “username” и “following_username” содержат дубликаты данных. Они возникли в результате того, что я хотел отобразить отношения между твиттами и пользователями. Давайте улучшим нашу структуру БД, разделив существующую таблицу на две: в одной будем хранить информацию, а в другой - отношения между записями.

Поскольку @Brett_Englebert подписан на @RealSkipBayless, то в таблице “following” отобразим это следующим образом: имя @Brett_Englebert поместим в колонку “from_user”, а @RealSkipBayless в “to_user.” Давайте посмотрим, как будет выглядеть таблица “following” после разделения Таблицы 1 :

Таблица 2. following

from_user to_user
_DreamLead Scootmedia
_DreamLead MetiersInternet
GunnarSvalander klout
GunnarSvalander zillow
GEsoftware DayJobDoc
GEsoftware byosko
adrianburch CindyCrawford
adrianburch Arjantim
AndyRyder MichaelDell
AndyRyder Yahoo
Brett_Englebert RealSkipBayless
Brett_Englebert stephenasmith
NimbusData dellock6
NimbusData rohitkilam
SSWUGorg drsql
SSWUGorg steam_games

Таблица 3. users

full_name username text created_at
Boris Hadjur _DreamLead What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? Tue, 12 Feb 2013 08:43:09 +0000
Gunnar Svalander GunnarSvalander Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases Tue, 12 Feb 2013 07:31:06 +0000
GE Software GEsoftware RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. Tue, 12 Feb 2013 07:30:24 +0000
Adrian Burch adrianburch RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. Tue, 12 Feb 2013 06:58:22 +0000
Andy Ryder AndyRyder5 http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 Tue, 12 Feb 2013 05:29:41 +0000
Andy Ryder AndyRyder5 http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 Tue, 12 Feb 2013 05:24:17 +0000
Brett Englebert Brett_Englebert #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ Tue, 12 Feb 2013 01:49:19 +0000
Brett Englebert Brett_Englebert #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm Tue, 12 Feb 2013 01:31:52 +0000
Nimbus Data Systems NimbusData @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory Mon, 11 Feb 2013 23:15:05 +0000
SSWUG.ORG SSWUGorg Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 Mon, 11 Feb 2013 22:15:37 +0000

Уже лучше. Теперь в таблице “users” (Таблица 3) у нас хранится только информация о твиттах, а в таблице following (Таблица 2) - зависимость пользователей.

Основатель теории реляционных баз данных, Эдгар Кодд, назвал бы этот процесс (удаления повторений из столбцов таблиц) приведением БД к первой нормальной форме.

Шаг 3. Удаление повторений из строк

Теперь мы займёмся устранением других проблем, а именно, избавимся от дубликатов в строках таблицы “users”. Поскольку пользователи @AndyRyder5 и @Brett_Englebert разместили по несколько твиттов, то их имена в таблице “users” (Таблица 3 ) дублируются в колонке full_name. Данная проблема также решается разделением таблицы “users”.

Поскольку текст твитта и время его создания являются уникальными данными, то их мы поместим в одну и ту же таблицу. Также нам нужно указать связь между твитами и пользователями. Для этого я создал специальный столбец username.

Таблица 4. tweets

username text created_at
_DreamLead What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? Tue, 12 Feb 2013 08:43:09 +0000
GunnarSvalander Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases Tue, 12 Feb 2013 07:31:06 +0000
GEsoftware RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. Tue, 12 Feb 2013 07:30:24 +0000
adrianburch RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. Tue, 12 Feb 2013 06:58:22 +0000
AndyRyder5 http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 Tue, 12 Feb 2013 05:29:41 +0000
AndyRyder5 http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 Tue, 12 Feb 2013 05:24:17 +0000
Brett_Englebert #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ Tue, 12 Feb 2013 01:49:19 +0000
Brett_Englebert #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm Tue, 12 Feb 2013 01:31:52 +0000
NimbusData @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory Mon, 11 Feb 2013 23:15:05 +0000
SSWUGorg Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 Mon, 11 Feb 2013 22:15:37 +0000

Таблица 5. users

full_name username
Boris Hadjur _DreamLead
Gunnar Svalander GunnarSvalander
GE Software GEsoftware
Adrian Burch adrianburch
Andy Ryder AndyRyder5
Brett Englebert Brett_Englebert
Nimbus Data Systems NimbusData
SSWUG.ORG SSWUGorg

После разделения в таблице users (Таблица 5 ) у нас присутствуют уникальные (не повторяющиеся) строки.

Данный процесс удаления дубликатов из строк называется приведением ко второй нормальной форме.

Шаг 4. Объединяем таблицы на основе ключей

Итак, в результате наших действий, Таблица 1 была разбита на 3 части: following (Таблица 2), tweets (Таблица 4), users (Таблица 5). Все дубликаты устранены. Для того чтобы в дальнейшем мы могли с лёгкостью извлекать данные из этой структуры, независимые друг от друга таблицы мы должны связать специальными отношениями, которые будут давать нам информацию о том, какому пользователю принадлежит какой твит, и кто на кого подписан.

Для создания связей между записями нам необходимо ввести уникальный идентификатор, который называется первичный ключ.

Вообще говоря, в Таблице 4 и 5 мы уже это сделали. В таблице “users” первичным ключом является колонка “username”, потому что логин пользователя должен быть уникальным значением и не может повторяться. В таблице “tweets” мы используем данный ключ для обозначения связи между пользователем и твитом. Колонка “username” в таблице “tweets” называется внешним ключом.

Если вы когда-то работали с базами данных, то у вас может возникнуть вопрос: можем ли мы использовать колонку “username” в качестве первичного ключа?

С одной стороны, это может упростить процесс поиска, ведь мы не используем никаких числовых ID. С другой стороны, что если пользователь захочет поменять свой логин? Это может привести к огромному количеству проблем. Для того чтобы не попасть в подобную ситуацию, лучше воспользоваться числовыми ID. Всё зависит от вашей системы. Если вы предоставляете вашим пользователям возможность менять логины, то лучше в качестве первичного ключа использовать автоинкрементированное числовое поле ID. В противном случае, колонка “username” вполне подойдёт для этой роли. Я оставлю всё как есть.

Давайте посмотрим на таблицу tweets (Таблица 4). Первичный ключ должен быть уникальным для каждой строки. Какую колонку в данной таблице мы можем выбрать для этой роли? Колонка “created_at” не подойдёт, т.к. в принципе 2 разных пользователя могут в одно и то же время опубликовать запись. С колонкой “text” та же история: два разных пользователя могут создать твит с текстом “Hello World”. Колонка “username” в данной таблице является внешним ключом для обозначения связи между пользователем и твитом. Итак, поскольку все возможные варианты нам не подходят, то лучшим решением будет добавление колонки id, которая будет первичным ключом для данной таблицы.

Таблица 6. tweets с колонкой id

ID username text created_at
1 _DreamLead What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? Tue, 12 Feb 2013 08:43:09 +0000
2 GunnarSvalander Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases Tue, 12 Feb 2013 07:31:06 +0000
3 GEsoftware RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. Tue, 12 Feb 2013 07:30:24 +0000
4 adrianburch RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. Tue, 12 Feb 2013 06:58:22 +0000
5 AndyRyder5 http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 Tue, 12 Feb 2013 05:29:41 +0000
6 AndyRyder5 http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 Tue, 12 Feb 2013 05:24:17 +0000
7 Brett_Englebert #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ Tue, 12 Feb 2013 01:49:19 +0000
8 Brett_Englebert #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm Tue, 12 Feb 2013 01:31:52 +0000
9 NimbusData @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory Mon, 11 Feb 2013 23:15:05 +0000
10 SSWUGorg Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 Mon, 11 Feb 2013 22:15:37 +0000

С таблицей following можем сделать то же самое, т.к. ни одна существующая колонка не подойдёт на роль первичного ключа. Колонки “from_user” и “to_user” являются внешними ключами и обозначают связь между подписками пользователей.

Итак, к этому моменту мы уже много чего сделали. Избавились от дублирующей информации в колонках и строках и выбрали для наших таблиц подходящие колонки на роль первичных и внешних ключей для обозначения зависимостей между данными. Данный процесс называется нормализацией и предназначен для приведения ваших таблиц под реляционную модель. Благодаря нормализации мы можем более простым образом реализовывать операции CRUD.

Ниже вы можете увидеть схему наших таблиц и связей между ними:

Системы Управления Базами Данных

Теперь, когда у нас есть реляционная БД, каким образом мы можем её имплементировать? Для этого мы можем воспользоваться системами управления базами данных (СУБД). Существует целый набор подобных программ, как платных, так и бесплатных. Среди платных можно выделить Oracle Database , IBM DB2 и Microsoft SQL Server . Бесплатные: MySQL , SQLite и PostgreSQL .

Чаще всего различные компании используют MySQL. Twitter в этом смысле - не исключение.

SQLite чаще используется при разработке приложений для iOS и Android, где хранится различного рода конфиденциальная информация. Браузер Google Chrome использует SQLite для хранения истории просмотров, кукисов, изображений...

PostgreSQL используется реже. Для неё существует полезное расширение PostGIS, которое делает данную СУБД удобной для хранения геолокационных данных. К примеру сервис OpenStreetMap исользует PostgreSQL.

Язык структурированных запросов (SQL)

После того, как вы выбрали подходящую для вас СУБД и установили её, следующим шагом было бы создание таблиц и управление данными. Для этого мы можем воспользоваться специальным языком SQL.

Создание БД development:

CREATE DATABASE development;

Создание таблицы Users:

CREATE TABLE users (full_name VARCHAR(100), username VARCHAR(100));

При создании полей нам необходимо указать тип хранимой информации и её размер. Колонки “full_name” и “username” будут типа VARCHAR, который предназначен для хранения строк символов. Размер 100 символов. Список всех типов вы можете найти .

Добавление записи:

INSERT INTO users (full_name, username) VALUES ("Boris Hadjur", "_DreamLead");

Извлечение всех записей пользователя _DreamLead:

Обновление записи:

Удаление записи:

SQL очень похож на человеческий язык (английский). В каждом СУБД SQL обладает рядом собственных особенностей и различий, но в целом, все разновидности SQL похожи друг на друга.

Итог

В этом уроке мы разобрали процесс создания реляционной БД, взяли набор данных и распределили их по таблицам, согласно реляционной модели. Также мы быстро пробежались по существующим СУБД и языку SQL.

Понятие реляционный (англ. relation -- отношение) связано с разработками известного американского специалиста в области систем баз данных, сотрудника фирмы IBM д-ра Е. Кодда (Codd E.F., A Relational Model of Data for Large Shared Data Banks. CACM 13: 6, June 1970), которым впервые был применен термин «реляционная модель данных».

В течение долгого времени реляционный подход рассматривался как удобный формальный аппарат анализа баз данных, не имеющий практических перспектив, так как его реализация требовала слишком больших машинных ресурсов. Только с появлением персональных ЭВМ реляционные и близкие к ним системы стали распространяться, практически не оставив места другим моделям.

Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

  • - каждый элемент таблицы - один элемент данных; повторяющиеся группы отсутствуют;
  • - все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;
  • - каждый столбец имеет уникальное имя;
  • - одинаковые строки в таблице отсутствуют;
  • - порядок следования строк и столбцов может быть произвольным. Таблица такого рода называется отношением.

База данных, построенная с помощью отношений, называется реляционной базой данных.

Отношения представлены в виде таблиц, строки которых соответствуют кортежам или записям, а столбцы - атрибутам отношений, доменам, полям.

Поле, каждое значение которого однозначно определяет соответствующую запись, называется простым ключом (ключевым полем). Если записи однозначно определяются значениями нескольких полей, то такая таблица базы данных имеет составной ключ.

Чтобы связать две реляционные таблицы, необходимо ключ первой таблицы ввести в состав ключа второй таблицы (возможно совпадение ключей); в противном случае нужно ввести в структуру первой таблицы внешний ключ - ключ второй таблицы.

Предложив реляционную модель данных, Э.Ф. Кодд создал и инструмент для удобной работы с отношениями - реляционную алгебру. Каждая операция этой алгебры использует одну или несколько таблиц (отношений) в качестве ее операндов и продуцирует в результате новую таблицу, т.е. позволяет "разрезать" или "склеивать" таблицы.

То, чем принципиально отличаются реляционные модели от сетевых и иерархических, на это можно сказать следующим образом: иерархические и сетевые модели данных - имеют связь по структуре, а реляционные - имеют связь по значению.

Проектирование баз данных традиционно считалось очень трудной задачей. Реляционная технология значительно упрощает эту задачу.

Разделением логического и физического уровней системы она упрощает процесс отображения "уровня реального мира", в структуру, которую система может прямо поддерживать. Поскольку реляционная структура сама по себе концептуально проста, она позволяет реализовывать небольшие и/или простые (и поэтому легкие для создания) базы данных, такие как персональные, сама возможность реализации которых никогда даже бы не рассматривалась в старых более сложных системах.

Теория и дисциплина нормализации может помочь, показывая, что случается, если отношения не структурированы естественным образом.

Реляционная модель данных особенно удобна для использования в базах данных распределенной архитектуры - она позволяет получать доступ к любым информационным элементам, хранящимся в узлах сети ЭВМ. Необходимо обратить особое внимание на высокоуровневый аспект реляционного подхода, который состоит во множественной обработке записей. Благодаря этому значительно возрастает потенциал реляционного подхода, который не может быть достигнут при обработке по одной записи и, прежде всего, это касается оптимизации.

Данная модель позволяет определять:

  • · операции по запоминанию и поиску данных;
  • · ограничения, связанные с обеспечением целостности данных.

Для увеличения эффективности работы во многих СУБД реляционного типа приняты ограничения, соответствующие строгой реляционной модели.

Многие реляционные СУБД представляют файлы БД для пользователя в табличном формате -- с записями в качестве строк и их полями в качестве столбцов. В табличном виде информация воспринимается значительно легче. Однако в БД на физическом уровне данные хранятся, как правило, в файлах, содержащих последовательности записей.

Основным преимуществом реляционных СУБД является возможность связывания на основе определенных соотношений файлов БД.

Со структурной точки зрения реляционные модели являются более простыми и однородными, чем иерархические и сетевые. В реляционной модели каждому объекту предметной области соответствует одно или более отношений. При необходимости определить связь между объектами явно, она выражается в виде отношения, в котором в качестве атрибутов присутствуют идентификаторы взаимосвязанных объектов. В реляционной модели объекты предметной области и связи между ними представляются одинаковыми информационными конструкциями, существенно упрощая саму модель.

СУБД считается реляционной при выполнении следующих двух условий, предложенных еще Э. Коддом:

  • · поддерживает реляционную структуру данных;
  • · реализует, по крайней мере, операции селекции, проекции и соединения отношений.

В последующем был создан целый ряд реляционных СУБД, в той или иной мере отвечающих данному определению. Многие СУБД представляют собой существенные расширения реляционной модели, другие являются смешанными, поддерживая несколько даталогических моделей.

На сегодняшний день реляционные базы данных остаются самыми распространенными, благодаря своей простоте и наглядности, как в процессе создания, так и на пользовательском уровне.

Основным достоинством реляционных баз данных является совместимость с самым популярным языком запросов SQL.

С помощью единственного запроса на этом языке можно соединить несколько таблиц во временную таблицу и вырезать из нее требуемые строки и столбцы (селекция и проекция). Так как табличная структура реляционной базы данных интуитивно понятна пользователям, то и язык SQL является простым и легким для изучения. Реляционная модель имеет солидный теоретический фундамент, на котором были основаны эволюция и реализация реляционных баз данных. На волне популярности, вызванной успехом реляционной модели, SQL стал основным языком для реляционных баз данных.

Но выявлены и недостатки рассмотренной модели баз данных:

  • - так как все поля одной таблицы должны содержать постоянное число полей заранее определенных типов, приходится создавать дополнительные таблицы, учитывающие индивидуальные особенности элементов, при помощи внешних ключей. Такой подход сильно усложняет создание сколько-нибудь сложных взаимосвязей в базе данных;
  • - высокая трудоемкость манипулирования информацией и изменения связей.

Реляционная модель

Реляционная модель базы данных была предложена в 1969 г. математиком и научным сотрудником фирмы IBM Э.Ф. Коддом (E.F. Codd). Некоторые начальные сведения о реляционных базах данных содержатся в обзорной статье “БД и СУБД ” 2. Поскольку в настоящее время именно реляционные базы данных являются доминирующими, в этой статье (а также в статьях “Описание данных ”, “Обработка данных ” и “Проектирование БД ” 2) подробно рассматриваются наиболее существенные понятия реляционной модели.

Сразу отметим, что теория реляционных баз данных изначально была сформулирована на строгом математическом языке, и именно строгие, формально определенные математические понятия наилучшим образом описывают суть вещей. Вместе с тем в большинстве случаев можно без особого ущерба пожертвовать строгостью терминологии в пользу прозрачности изложения, что мы и будем стараться делать.

Основная идея реляционной модели заключается в следующем. База данных состоит из ряда неупорядоченных таблиц (в простейшем случае - из одной таблицы). Таблицами можно манипулировать посредством непроцедурных (декларативных) операций - запросов , результатами которых также являются таблицы.

Нередко слово “реляционная” (relational ) в термине “реляционная модель” трактуют, основываясь на том, что в реляционной базе данных устанавливаются связи (relate ) между таблицами. Такое объяснение удобно, но оно не является точным. В оригинальной системе терминов Кодда термины связи (relations ), атрибуты (attributes ) и кортежи (tuples ) употреблялись там, где большинство из нас пользуется более привычными терминами таблицы, столбцы (поля) и строки (записи).

При построении инфологической модели предметной области (см. “БД и СУБД ”, “Проектирование БД ” 2) выделяются сущности (объекты), описываются их свойств а (характеристики, атрибуты), существенные для целей моделирования, и устанавливаются связи между сущностями. На этапе перехода от инфологической к даталогической реляционной модели как раз и появляются таблицы. Как правило, каждая сущность представляется одной таблицей. Каждая строка таблицы (одна запись) соответствует одному экземпляру сущности, а каждое поле описывает некоторое свойство (атрибут) .

Например, если нам требуется хранить информацию о людях, включающую фамилию каждого, имя, отчество, ИНН, страну проживания и дату рождения, то сущностью является именно человек, а указанные данные - атрибутами. Сама сущность естественным образом становится названием таблицы.

Таблица “Человек”

Реляционная модель требует, чтобы каждая строка таблицы была уникальной, т.е. чтобы любые две строки различались значением хотя бы одного атрибута.

Традиционная табличная форма удобна, когда требуется представить сами данные. Если же, как в приведенном выше примере, интересует лишь структура - имена полей, то с точки зрения наглядности, удобства использования в схемах и экономии места удобнее изображать ее следующим образом:

Ключи

Ключом таблицы называется поле или группа полей, содержащие уникальные в рамках данной таблицы значения . Ключ однозначно определяет соответствующую строку таблицы. Если ключ состоит из одного поля, его часто называют простым , если из нескольких - составным . В приведенном выше примере ключом является поле ИНН (мы считаем известным тот факт, что ИНН в пределах страны являются уникальными).

Рассмотрим пример таблицы с составным ключом. На сайтах прогнозов погоды нередко представляют информацию следующим образом: для каждой даты указывают прогнозируемую температуру ночью, утром, днем и вечером. Для хранения указанной информации можно использовать таблицу следующего вида:

В этой таблице ни поле Дата, ни Время суток, ни Температура не являются ключами - в каждом из этих полей значения могут повторяться. Зато комбинация полей Дата+Время суток является уникальной и однозначно определяет строку таблицы. Это и есть составной ключ.

Нередко встречается ситуация, в которой выбор ключа не является однозначным. Вернемся к первому примеру. Допустим, в дополнение к фамилии, имени, отчеству, ИНН, дате рождения требуется хранить серию и номер общегражданского паспорта и серию и номер заграничного паспорта. Таблица будет иметь следующий вид.

В этой таблице можно выбрать целых три ключа. Один из них - простой (ИНН), два другие - составные (Серия+Номер общегражданского паспорта и Серия+Номер заграничного паспорта). В такой ситуации разработчик выбирает наиболее удобный с точки зрения организации БД ключ (в общем случае - ключ, на поиск значения которого требуется наименьшее время). Выбранный ключ в этом случае часто называют главным, или первичным , ключом, а другие комбинации столбцов, из которых можно сделать ключ, - возможными , или альтернативными, ключами. Отметим, что хотя бы один возможный ключ в таблице имеется всегда, так как строки не могут повторяться и, следовательно, комбинация всех столбцов гарантированно является возможным ключом.

При изображении таблиц первичные ключи таблиц принято выделять. Например, соответствующие поля часто подчеркивают. А Microsoft Access выделяет ключевые поля полужирным шрифтом.

Еще чаще, чем с неоднозначностью выбора ключа, разработчики сталкиваются с отсутствием ключа среди данных, которые требуется хранить. Подобный факт может быть установлен в процессе анализа предметной области. Например, если требуется хранить простой список людей - имена, фамилии, отчества и даты рождения, то ключа в этом наборе атрибутов нет вовсе - мыслимой является ситуация, когда у двух различных людей указанные данные совпадают полностью. В таком случае приходится искусственно вводить дополнительное поле, например, уникальный номер человека. Такой ключ в литературе иногда называют суррогатным . Нередко суррогатный ключ вводят и из соображений эффективности. Если, например, в таблице имеется длинный составной ключ, то разработчики часто вводят дополнительный короткий числовой суррогатный ключ и именно его делают первичным. Нередко так поступают даже при наличии простого ключа, имеющего “неудобный” (неэффективный для поиска) тип данных, например, строковый. Подобные операции уже не имеют отношения к теории, но сплошь и рядом встречаются на практике.

Внимательный читатель, возможно, обратит внимание на то, что ключ практически всегда можно расширить (если только в него не входят все поля таблицы) за счет включения избыточных полей. Формально такой ключ останется ключом, но с практической точки зрения это лишь игра понятиями. Такие ключи и за возможные-то не считают, поскольку всегда необходимо стремиться к минимизации длины (сложности) ключа.

Нормальные формы, нормализация

Не всякая таблица, которую мы можем нарисовать на бумаге или в Word’е, может быть таблицей реляционной базы данных. И не всякая таблица, которая может использоваться в реляционной базе данных, является правильной с точки зрения требования реляционной модели.

Во-первых, требуется, чтобы все данные в пределах одного столбца имели один и тот же тип (о типах см. Описание данных ” 2). С этой точки зрения приведенный ниже пример не имеет смысла даже обсуждать:

Во-вторых, требуется, чтобы в таблице был назначен первичный ключ .

Указанные требования являются необходимыми, но недостаточными. В теории реляционных баз данных вводятся понятия так называемых “нормальных форм” - требований к организации данных в таблицах. Нормальные формы нумеруются последовательно, по мере ужесточения требований. В правильно спроектированной БД таблицы находятся как минимум в третьей нормальной форме. Соответственно, мы рассмотрим первые три нормальные формы. Напомним, что мы имеем дело с таблицами, удовлетворяющими двум сформулированным выше основным требованиям.

Первая нормальная форма (1НФ)

Первая нормальная форма предписывает, что все данные, содержащиеся в таблице, должны быть атомарными (неделимыми ). Перечень соответствующих атомарных типов данных определяется СУБД. Требование 1НФ совершенно естественное. Оно означает, что в каждом поле каждой записи должна находиться только одна величина, но не массив и не какая-либо другая структура данных. Приведем осмысленный пример таблицы, которая не находится в 1НФ. Пусть у нас имеются списки оценок учеников по некоторому предмету.

Так как значение поля Оценки не является атомарным, таблица не соответствует требованиям 1НФ.

О возможном способе представления списка оценок написано в методических рекомендациях к статье “Проектирование БД” 2.

Вторая нормальная форма (2НФ)

Говорят, что таблица находится во второй нормальной форме, если она находится в 1НФ и каждый не ключевой столбец полностью зависит от первичного ключа. Другими словами, значение каждого поля должно полностью определяться значением первичного ключа. Важно отметить, что зависимость от первичного ключа понимается именно как зависимость от ключа целиком, а не от отдельной его составляющей (в случае составного ключа). Приведем пример таблицы, которая не находится во 2НФ. Для этого вернемся к примеру прогноза погоды и дополним таблицу еще одним столбцом - временем восхода солнца (это вполне правдоподобный пример, такого рода информация часто приводится на сайтах прогноза погоды).

Как мы помним, данная таблица имеет составной ключ Дата+Время суток. Поле Температура полностью зависит от первичного ключа - с ним проблем нет. А вот поле Восход зависит лишь от поля Дата, Время суток на время восхода естественным образом не влияет.

Здесь уместно задаться вопросом: а в чем практический смысл 2НФ? Какая польза от этих ограничений? Оказывается - большая. Допустим, что в приведенном выше примере разработчик проигнорирует требования 2НФ. Во-первых, скорее всего возникнет так называемая избыточность - хранение лишних данных. Ведь если для одной записи с данной датой уже хранится время восхода, то для всех других записей с данной датой оно должно быть таким же и хранить его, вообще говоря, незачем.

Обратим внимание на слова “должно быть”. А если не будет? Ведь на уровне БД это никак не контролируется - ключ в таблице составной, одинаковые даты могут быть (и по смыслу скорее всего будут). И никакие формальные ограничения (а наше понимание, что “такого не может быть”, к таковым не относится) не запрещают указать разное время восхода для одной и той же даты.

Третья нормальная форма (3НФ)

Говорят, что таблица находится в 3НФ, если она соответствует 2НФ и все не ключевые столбцы взаимно независимы.

Взаимную зависимость столбцов удобно понимать следующим образом: столбцы являются взаимно зависимыми, если нельзя изменить один из них, не изменяя другой.

Приведем пример таблицы, которая не находится в 3НФ. Рассмотрим пример простой записной книжки для хранения домашних телефонов людей, проживающих, возможно, в различных регионах страны.

В этой таблице присутствует зависимость между не ключевыми столбцами Город и Код города, следовательно, таблица не находится в 3НФ.

Отметим, что наличие указанной выше зависимости разработчик определяет, анализируя предметную область, - никакими формальными методами подобную коллизию увидеть нельзя. При изменении свойств предметной области зависимость между столбцами может и исчезнуть. Например, если в пределах одного города вводятся различные коды (как 495 и 499 в Москве), соответствующие столбцы перестают быть связанными с точки зрения нарушения требований 3НФ.

В теории реляционных баз данных рассматриваются и формы высших порядков - нормальная форма Бойса - Кодда, 4НФ, 5НФ и даже выше. Большого практического значения эти формы не имеют, и разработчики, как правило, всегда останавливаются на 3НФ.

Нормализация БД

Нормализация представляет собой процесс приведения таблиц базы данных к выбранной нормальной форме. Нормализация до 2НФ, как правило, сводится к декомпозиции - разбиению одной таблицы на несколько. Нормализация до 3НФ обычно может быть выполнена удалением зависимых (вычисляемых) столбцов. В некоторых случаях при нормализации до 3НФ приходится также производить декомпозицию.

Многотабличные БД, связи между таблицами, внешние ключи

На практике однотабличные базы данных встречаются достаточно редко, поскольку с точки зрения моделирования базой данных предметной области наличие одной таблицы означает наличие одной сущности. В свою очередь, наличие нескольких сущностей обычно означает наличие связей между ними.

Не ставя целью полное проектирование БД, рассмотрим пример, позволяющий продемонстрировать связи в многотабличных БД.

Пусть мы имеем дело со школой, в которой есть ученики, сгруппированные по классам, и учителя, преподающие некоторые предметы. У нас сразу выделяются четыре сущности: ученики, учителя, классы и предметы. Эти сущности уже дают нам четыре таблицы.

Далее нам требуется решить вопрос об атрибутах сущностей - какую именно информацию мы будем хранить. Поскольку наш пример носит исключительно демонстрационный характер, постараемся минимизировать объем хранимой информации. Договоримся для каждого ученика хранить фамилию и имя, для класса - номер параллели и букву, идентифицирующую класс внутри параллели, для учителя - фамилию, имя и отчество, для предмета - только его название.

Теперь нам следует решить вопрос с первичными ключами. Таблицы учеников и учителей в принципе не имеют ключа, поэтому мы введем в них суррогатный числовой ключ - номер. Таблицы классов и предметов, вообще говоря, имеют ключи. В таблице классов ключ составной, его образуют атрибуты Номер параллели+Буква, а в таблице предметов простой ключ состоит из единственного поля - названия предмета. Вспомним, что, говоря о ключах, мы упоминали о том, что суррогатные ключи часто добавляют из соображений эффективности, стремясь избавиться от составных ключей или ключевых полей неудобных типов, например, строковых. Так мы и поступим. Добавим в каждую из таблиц суррогатный числовой ключ.

В результате мы получим следующий набор таблиц, соответствующих описываемым сущностям.

Понимая, с какой предметной областью имеем дело, мы знаем, что наши сущности существуют не сами по себе - они связаны некоторыми отношениями, которые мы обозначили выше. Но как их связать технически? Тут не обойтись без введения дополнительных полей и даже дополнительных таблиц. Разберемся с отношениями между сущностями по порядку.

Чтобы отнести ученика к некоторому классу, заведем в таблице “Ученик” дополнительное поле Номер класса. (Понятно, что его тип должен полностью совпадать с типом поля Номер класса в таблице “Класс”.) Теперь мы можем связать таблицы “Ученик” и “Класс” по совпадающим значениям полей Номер класса (мы не случайно назвали эти поля одинаково, на практике так часто поступают, чтобы легко ориентироваться в связывающих полях). Заметим, что одной записи в таблице “Класс” может соответствовать много записей в таблице “Ученик” (и на практике скорее всего соответствует - трудно представить себе класс из одного ученика). О таких таблицах говорят, что они связаны отношением “один ко многим ”. А поле Номер класса в таблице “Ученик” называют внешним ключом . Как видим, назначение внешних ключей - связывание таблиц. Отметим, что внешний ключ всегда ссылается на первичный ключ связанной таблицы (т.е. внешний ключ находится на стороне “многих”). Связанный с внешним первичный ключ называют родительским , хотя этот термин используется реже.

Проиллюстрируем сказанное схемой в стиле Microsoft Access (подробнее о “Схеме данных” Access написано в статье “Описание данных” 2).

Теперь вспомним об учителях и предметах. Анализируя предметную область (только так - ведь истинное положение вещей из самой формальной модели извлечь невозможно), мы замечаем, что тип связи между сущностями “учитель” и “предмет” иной, нежели рассмотренный выше. Ведь не только один предмет могут вести много учителей, но и один учитель может вести много предметов. Таким образом, между этими сущностями имеется связь “многие ко многим ”. Тут уже не обойтись введением дополнительных полей (попробуйте!). Связи “многие ко многим” всегда разрешаются посредством введения дополнительной таблицы. А именно, организуем таблицу “Учитель-Предмет”, имеющую следующую структуру:

Таблица “Учитель-Предмет”

Эта таблица имеет составной ключ, образованный из двух ее полей. И таблица “Учитель”, и таблица “Предмет” связаны с данной таблицей отношением “один ко многим” (разумеется, в обоих случаях “многие” находятся на стороне “Учитель-Предмет”). Соответственно, в таблице “Учитель-Предмет” имеются два внешних ключа (оба - части составного первичного ключа, что не воспрещается), служащие для связи с соответствующими таблицами.

На практике, помимо рассмотренных отношений “один ко многим” и “многие ко многим”, встречается и отношение “один к одному ”. С точки зрения теории такое отношение интереса не представляет, так как две таблицы, связанные отношением “один к одному”, всегда можно просто объединить в одну. Тем не менее в реальных базах данных отношение “один к одному” применяется для оптимизации обработки данных. Проиллюстрируем сказанное примером.

Допустим, мы храним очень много разнообразной информации о людях - данные их всевозможных документов, телефоны, адреса и пр. Скорее всего боRльшая часть этих данных будет использоваться очень редко. А часто нам потребуются лишь фамилия, имя, отчество и телефон. Тогда имеет смысл организовать две таблицы и связать их отношением “один к одному”. В одной (небольшой) таблице хранить часто используемую информацию, в другой - остальную. Естественно, что таблицы, связанные отношением “один к одному”, имеют один и тот же первичный ключ.

Правила целостности

Реляционная модель определяет два общих правила целостности базы данных: целостность объектов и ссылочная целостность.

Правило целостности объектов очень простое. Оно требует, чтобы первичные ключи таблиц не содержали неопределенных (пустых) значений .

Правило ссылочной целостности требует, чтобы внешние ключи не содержали несогласованных с родительскими ключами значений . Возвращаясь к рассмотренному выше примеру, мы должны потребовать, например, чтобы ученики относились лишь к классу, номер которого указан в таблице “Классы”.

Большинство СУБД умеют следить за целостностью данных (разумеется, это требует соответствующих усилий и от разработчика на этапе описания структур данных). В частности, для поддержания ссылочной целостности используются механизмы каскадирования операций. Каскадирование подразумевает, в частности, то, что при удалении записи из “родительской” таблицы, связанной с другой таблицей отношением “один ко многим”, из таблицы “многих” автоматически (самой СУБД, без участия пользователя) удаляются все связанные записи. И это естественно, ведь такие записи “повисают в воздухе”, они более ни с чем не связаны.

Индексация

Индексация - крайне важная с точки зрения практического применения, но факультативная с позиции чистой теории вещь. Основное назначение индексации - оптимизация (убыстрение) поиска (и, соответственно, некоторых других операций с базой данных). Индексация в любом случае требует дополнительных ресурсов (на физическом уровне чаще всего создаются специальные индексные файлы). Операции, связанные с модификацией данных, индексация может даже замедлять, поэтому индексируют обычно редко изменяемые таблицы, в которых часто производится поиск.

Индексный файл очень похож на индекс обычной книги. Для каждого значения индекса хранится список строк таблицы, в которых содержится данное значение. Соответственно, для поиска не надо просматривать всю таблицу - достаточно заглянуть в индекс. Зато при модификации записей может потребоваться перестроить индекс. И на это уходит дополнительное время.

Разумеется, и речи не идет о том, чтобы излагать теорию реляционных баз данных в рамках базового курса информатики! Тем не менее эта статья очень важна для нашей энциклопедии, поскольку в данном случае мы имеем дело с материалом, который не может быть в полном объеме изложен на уроках, но учитель владеть им должен. Почему?

Во-первых, потому что ряд понятий изучаются как раз в рамках базового курса. Это и табличное представление данных, и ключи таблиц. А все мы знаем, что очень трудно грамотно и точно изложить лишь некоторые понятия, не представляя общей картины.

Во-вторых, выполняя с детьми простые запросы к базам данных (соответствующий материал изложен в статье “Обработка данных” 2), необходимо иметь дело с правильными с точки зрения реляционной теории таблицами. Не требуется объяснять ученикам, что эти таблицы правильные, а “вот если бы…, то таблица была бы неправильной”, но недопустимо использовать плохие примеры.

В профильном курсе информатики ситуация может быть принципиально иной. Важнейшая и крайне продуктивная форма работы в профильных классах - проектная. В рамках учебных проектов можно и нужно разрабатывать несложные базы данных, и здесь не обойтись без основ изложенной теории. Необходимо, однако, учитывать следующее:

Моделируемые предметные области должны быть не слишком большими;

Они должны быть очень хорошо знакомы учащимся (в этом смысле изрядно поднадоевший всем проект “Школа” - не худший выбор!);

Наивно ожидать, что, прослушав основы теории, ученики смогут что-то спроектировать сами. Каждый шаг необходимо проходить вместе с ними, подробно аргументируя свои действия.