Виды сетевых технологий, а также сферы их применения.

Технология Ethernet

Ethernet – это самый распространенный на сегодняшний день стандарт локальных сетей .

Ethernet – это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году.

В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet. Поэтому фирменную версию стандарта Ethernet называют стандартом Ethernet DIX, или Ethernet II, на основе которых был разработан стандарт IEEE 802.3.

На основе стандарта Ethernet были приняты дополнительные стандарты: в 1995 году Fast Ethernet (дополнение к IEEE 802.3), в 1998 году Gigabit Ethernet (раздел IEEE 802.3z основного документа), которые во многом не являются самостоятельными стандартами.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код (рис. 3.9).

В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому (передним фронтом импульса), а ноль ‑ обратным перепадом (задним фронтом).

Рис. 3.9. Дифференциальное манчестерское кодирование

В стандарте Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используется один и тот же метод разделения среды передачи данных ‑ метод CSMA/CD.

Каждый ПК работает в Ethernet согласно принципу «Слушай канал передачи, перед тем как отправить сообщения; слушай, когда отправляешь; прекрати работу в случае помех и попытайся еще раз».

Данный принцип можно расшифровать (объяснить) следующим образом:

1. Никому не разрешается посылать сообщения в то время, когда этим занят уже кто-то другой (слушай перед тем, как отправить).

2. Если два или несколько отправителей начинают посылать сообщения примерно в один и тот же момент, рано или поздно их сообщения «столкнутся» друг с другом в канале связи, что называется коллизией.

Коллизии нетрудно распознать, поскольку они всегда вызывают сигнал помехи, который не похож на допустимое сообщение. Ethernet может распознать помехи и заставляет отправителя приостановить передачу и подождать некоторое время, прежде, чем повторно отправить сообщение.

Причины широкой распространенности и популярности Ethernet (достоинства):

1. Дешевизна.

2. Большой опыт использования.

3. Продолжающиеся нововведения.

4. Богатство выбора оборудования. Многие изготовители предлагают аппаратуру построения сетей, базирующуюся на Ethernet.

Недостатки Ethernet:

1. Возможность столкновений сообщений (коллизии, помехи).

2. В случае большой загрузки сети время передачи сообщений непредсказуемо.

Технология Token Ring

Сети Token Ring, как и сети Ethernet, характеризует разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо . Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером, или токеном (token) .

Технология Token Ring был разработана компанией IBM в 1984 году, а затем передана в качестве проекта стандарта в комитет IEЕЕ 802, который на ее основе принял в 1985 году стандарт 802.5.

Каждый ПК работает в Token Ring согласно принципу «Ждать маркера, если необходимо послать сообщение, присоединить его к маркеру, когда он будет проходить мимо. Если проходит маркер, снять с него сообщение и отправить маркер дальше».

Сети Token Ring работают с двумя битовыми скоростями ‑ 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры ‑ посланный кадр всегда возвращается в станцию-отправитель.

Рис. 3.10. Принцип технологии TOKEN RING

В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например, может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса. Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Сеть Token Ring может включать до 260 узлов.

Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет.

Активный концентратор выполняет функции регенерации сигналов, и поэтому иногда называется повторителем, как в стандарте Ethernet.

В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

Все станции в кольце должны работать на одной скорости либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, – магистральными (trunk cable).

Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля:

– STP Type 1 ‑ экранированная витая пара (Shielded Twistedpair).
В кольцо допускается объединять до 260 станций при длине ответвительных кабелей до 100 метров;

– UTP Туре 3, UTP Туре 6 ‑ неэкранированная витая пара (Unshielded Twistedpair). Максимальное количество станций сокращается до 72 при длине ответвительных кабелей до 45 метров;

– волоконно-оптический кабель.

Расстояние между пассивными MSAU может достигать 100 м при использовании кабеля STP Туре 1 и 45 м при использовании кабеля UTP Type 3. Между активными MSAU максимальное расстояние увеличивается соответственно до 730 м или 365 м в зависимости от типа кабеля.

Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения в основном связаны со временем оборота маркера по кольцу.

Все значения тайм-аутов в сетевых адаптерах узлов сети Token Ring можно настраивать, поэтому можно построить сеть Token Ring с большим количеством станций и с большей длиной кольца.

Преимущества технологии Token Ring:

· гарантированная доставка сообщений;

· высокая скорость передачи данных (до 160% Ethernet).

Недостатки технологии Token Ring:

· необходимы дорогостоящие устройства доступа к среде;

· технология более сложная в реализации;

· необходимы 2 кабеля (для повышения надежности): один входящий, другой исходящий от компьютера к концентратору;

· высокая стоимость (160-200% от Ethernet).

Технология FDDI

Технология FDDI (Fiber Distributed Data Interface) – оптоволоконный интерфейс распределенных данных ‑ это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Технология появилась в середине 80-х годов .

Технология FDDI во многом основывается на технологии Token Ring, поддерживая метод доступа с передачей маркера.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru ‑ «сквозным», или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI.

Рис. 3.11. ИВС с двумя циклическими кольцами в аварийном режиме

Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному – в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца – token ring.

Отличия метода доступа заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной. Это время зависит от загрузки кольца - при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля. Эти изменения в методе доступа касаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания маркера по-прежнему остается фиксированной величиной.

Технология FDDI в настоящее время поддерживает типа кабелей:

– волоконно-оптический кабель;

– неэкранированная витая пара категории 5. Последний стандарт появился позже оптического и носит название TP-PMD (Physical Media Dependent).

Оптоволоконная технология обеспечивает необходимые средства для передачи данных от одной станции к другой по оптическому волокну и определяет:

Использование в качестве основной физической среды многомодового волоконно-оптического кабеля 62,5/125 мкм;

Требования к мощности оптических сигналов и максимальному затуханию между узлами сети. Для стандартного многомодового кабеля эти требования приводят к предельному расстоянию между узлами в 2 км, а для одномодового кабеля расстояние увеличивается до 10–40 км в зависимости от качества кабеля;

Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;

Параметры оптических разъемов MIC (Media Interface Connector), их маркировку;

Использование для передачи света с длиной волны в 1,3 нм;

Максимальная общая длина кольца FDDI составляет 100 километров, максимальное число станций с двойным подключением в кольце ‑ 500.

Технология FDDI разрабатывалась для применения в ответственных участках сетей ‑ на магистральных соединениях между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главные требования, у разработчиков были (достоинства ):

‑ обеспечение высокой скорости передачи данных,

‑ отказоустойчивость на уровне протокола;

‑ большие расстояния между узлами сети и большое количество подключенных станций.

Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой (недостаток ). Даже появление более дешевого варианта для витой пары не намного снизило стоимость подключения одного узла к сети FDDI. Поэтому практика показала, что основной областью применения технологии FDDI стали магистрали сетей, состоящих из нескольких зданий, а также сети масштаба крупного города, то есть класса MAN.

Технология Fast Ethernet

Потребности в высокоскоростной и в то же время недорогой технологии для подключения к сети мощных рабочих станций привели в начале 90-х годов к созданию инициативной группы, которая занялась поисками нового Ethernet, такой же простой и эффективной технологии, но работающей на скорости 100 Мбит/с .

Специалисты разбились на два лагеря, что в конце концов привело к появлению двух стандартов, принятых осенью 1995 года: комитет 802.3 утвердил стандарт Fast Ethernet, почти полностью повторяющий технологию Ethernet 10 Мбит/с.

Технология Fast Ethernet сохранила в неприкосновенности метод доступа CSMA/CD, оставив в нем тот же алгоритм и те же временные параметры в битовых интервалах (сам битовый интервал уменьшился в 10 раз). Все отличия Fast Ethernet от Ethernet проявляются на физическом уровне.

В стандарте Fast Ethernet определены три спецификации физического уровня:

‑ 100Base-TX для 2-х пар UTP категории 5 или 2-х пар STP Type 1 (метод кодирования 4В/5В);

‑ l00Base-FX для многомодового волоконно-оптического кабеля с двумя оптическими волокнами (метод кодирования 4В/5В);

‑ 100Base-T4, работающую на 4-х парах UTP категории 3, но использующую одновременно только три пары для передачи, а оставшуюся ‑ для обнаружения коллизии (метод кодирования 8В/6Т).

Стандарты l00Base-TX/FX могут работать в полнодуплексном режиме.

Максимальный диаметр сети Fast Ethernet равен приблизительно 200 м, а более точные значения зависят от спецификации физической среды. В домене коллизий Fast Ethernet допускается не более одного повторителя класса I (позволяющего транслировать коды 4В/5В в коды 8В/6Т и обратно) и не более двух повторителей класса II (не позволяющих выполнять трансляцию кодов).

Технология Fast Ethernet при работе на витой паре позволяет за счет процедуры автопереговоров двум портам выбирать наиболее эффективный режим работы - скорость 10 Мбит/с или 100 Мбит/с, а также полудуплексный или полнодуплексный режим.

Технология Gigabit Ethernet

Технология Gigabit Ethernet добавляет новую, 1000 Мбит/с, ступень в иерархии скоростей семейства Ethernet. Эта ступень позволяет эффективно строить крупные локальные сети, в которых мощные серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль Gigabit Ethernet объединяет их, обеспечивая достаточно большой запас пропускной способности.

Разработчики технологии Gigabit Ethernet сохранили большую степень преемственности с технологиями Ethernet и Fast Ethernet. Gigabit Ethernet использует те же форматы кадров, что и предыдущие версии Ethernet, работает в полнодуплексном и полудуплексном режимах, поддерживая на разделяемой среде тот же метод доступа CSMA/CD с минимальными изменениями.

Для обеспечения приемлемого максимального диаметра сети в 200 м в полудуплексном режиме разработчики технологии пошли на увеличение минимального размера кадра в 8 раз (с 64 до 512 байт). Разрешается также передавать несколько кадров подряд, не освобождая среду, на интервале 8096 байт, тогда кадры не обязательно дополнять до 512 байт. Остальные параметры метода доступа и максимального размера кадра остались неизменными.

Летом 1998 года был принят стандарт 802.3z, который определяет использование в качестве физической среды трех типов кабеля:

‑ многомодового оптоволоконного (расстояние до 500 м),

‑ одномодового оптоволоконного (расстояние до 5000 м),

‑ двойного коаксиального (twinax), по которому данные передаются одновременно по двум медным экранированным проводникам на расстояние до 25 м.

Для разработки варианта Gigabit Ethernet на UTP категории 5 была создана специальная группа 802.3ab, которая уже разработала проект стандарта для работы по 4-м парам UTP категории 5. Принятие этого стандарта ожидается в ближайшее время.

Введение

Глава 1. Формы использования сетевых технологий в образовании

1 Сетевые технологии в образовании

2 Электронная почта

1.3 Технология World-Wide Web (WWW)

1.4 Поисковые системы и каталоги Интернет

5 Компьютерные телеконференции

6 Электронные библиотеки

Глава 2. Собственно образовательные сетевые технологии и ресурсы

1 Желательные компоненты системы сетевого образования

2 Образовательные порталы и дистанционное образование

Заключение


Введение

Образование должно опережать жизнь. Это аксиома, давно ставшая общим местом, но по-прежнему остающаяся (по крайней мере, в России) чистой декларацией. Каким образом образование может опережать жизнь? Понятно, что преподавать то, чего ещё нет, невозможно. Но давать учащемуся самые современные знания, одновременно ориентируя его на решение основополагающих, концептуальных вопросов, - можно. Именно концептуальность образования в области конкретных реализаций стимулирует поиск новых, более совершенных, более смелых решений.

Информатизация является объективным процессом во всех сферах человеческой деятельности, в том числе образовании. Цель информатизации образования состоит в глобальной интенсификации интеллектуальной деятельности за счет использования новых информационных технологий.

Информационная насыщенность современного общества, его функциональность на достойном уровне сегодня предполагают такие скорости движения информации, которые могут обеспечить только компьютерные сети, интегрированные в глобальное информационное пространство.

Таким образом, цель данной работы - рассмотреть проблемы внедрения в образование и образовательный процесс современных форм и методов обучения на основе достижений компьютерной техники и коммуникационных технологий в связи с растущей глобализацией всех областей жизни общества, в том числе и педагогической науки и практики.

В соответствии с целью, объектом и предметом исследования были поставлены следующие задачи: выявление основных проблем и перспектив внедрения в образование информатизации; рассмотрение форм использования сетевых технологий в образовании; обзор сетевых технологий, в российском образовании.


.1 Сетевые технологии в образовании

Бурное развитие телекоммуникационных технологий, в частности сети Интернет, и мультимедиа в последние годы не только способствовало появлению повышенного интереса к использованию компьютеров в учебном процессе, но и обусловило появление системы образования нового поколения - компьютерного дистанционного образования. О чем свидетельствует приведенная ниже схема.

Схема 1 - Образование нового поколения - компьютерное дистанционное образование

Сетевое образование, как один из видов дистанционного, представляет собой быстро меняющуюся и пока во многом гипотетическую область социально-экономического развития, плохо поддающуюся прогнозированию, что предполагает важность оценки альтернативных технологий и всевозможный "подогрев" интереса общественности и специалистов к этой области.

Основная проблематика сетевого образования, включает вопросы развития новых технологических схем, модернизацию методических ресурсов и развитие инфраструктуры. Рассмотрение актуальных проблем сетевого образования происходит на фоне продолжающегося в последние годы процесса сокращения рабочих мест практически во всех развитых странах, ускорения модернизации под воздействием экологических ограничений содержания многих профессий, с одной стороны, и, с другой, - вследствие непрекращающегося технологического развития человечества.

Всё это ведёт к сокращению жизненного цикла знаний и навыков, превращает образовательную функцию из разовой (как в начале века) и повторяющейся (в середине века) в регулярную. Наиболее яркий пример - информационные технологии, меняющие программно-технические платформы через полтора-два года. В этих условиях классическая форма очного обучения становится лишь частью общего образовательного инструментария, причём всё меньшей частью. Внешне незаметно, но непрерывно возрастает косвенное участие в образовательном процессе электронных средств массовой информации - в первую очередь, телевидения, а в последние годы - и общедоступных компьютерных сетей.

1.2 Электронная почта

В качестве самой популярной "несущей" технологии в дистанционном образовании сейчас используется обычная электронная почта, базирующаяся на протоколе TCP/IP . Обучающимся очень часто бывает удобно разделять момент времени получения и осмысления учебной информации и момент времени направления ответного сигнала, который может представлять собой дополнительные вопросы к "учителю", или ответы на контрольные вопросы и задачи, содержащиеся в полученном учебном материале.

В равной степени электронная почта хороша для поддержки и других базисных функций образовательного процесса. Привлекательность технологической схемы электронной почты, опирающаяся на её относительную доступность и дешевизну, по-видимому, сохранится для "заочников" на десятки лет.

В последнее время все больше внимания уделяется технологиям реального времени, в том числе, в первую очередь, технологии "всемирной паутины" -World Wide Web.

1.3 Технология World-Wide Web (WWW)

Технология Internet, названная Всемирная паутина (World-WideWeb, WWW или W3) является одним из популярных и интересных сервисов Интернет сегодня, а также удобным средством работы с информацией. Очень часто понятия WWW и Интернет даже считают тождественными.

Эта система основана на двух "китах" - Протокол Передачи Гипертекста - Hypertext Transport Protocol (HTTP), который служит для передачи сложных документов, и Язык Создания Гипертекста - Hypertext Markup Language (HTML), использующий гипертекстовые связи для определения объектов внутри документов-файлов.- информационная система, которой весьма непросто дать корректное определение. Вот некоторые из эпитетов, которыми она может быть обозначена: гипертекстовая, распределенная, интегрирующая, глобальная. WWW работает по принципу клиент-сервер, точнее, клиент-серверы: существует множество серверов, которые по запросу клиента возвращают ему гипермедийный документ - документ, состоящий из частей с разнообразным представлением информации (текст, звук, графика, трехмерные объекты и т.д.), в котором каждый элемент может являться ссылкой на другой документ или его часть. Ссылки WWW указывают не только на документы, специфичные для самой WWW, но и на прочие сервисы и информационные ресурсы Интернет. Более того, большинство программ-клиентов WWW (browsers, навигаторы) не просто понимают такие ссылки, но и являются программами-клиентами соответствующих сервисов: ftp, gopher, сетевых новостей Usenet, электронной почты и т.д. Таким образом, программные средства WWW являются универсальными для различных сервисов Интернет, а сама информационная система WWW играет интегрирующую роль.- сервис прямого доступа, требующий полноценного подключения к Интернет, и более того, часто требующий быстрых линий связи, в случае, если документы, которые Вы читаете, содержат много графики или другой нетекстовой информации.

Технология Web, разработанная в 1989 г. в Женеве, в Лаборатории физики элементарных частиц Европейского центра ядерных исследований (CERN) Тимом Бернерс-Ли (Tim Berners-Lee) и его коллегами-программистами, сначала была направлена на создание единой сети для научных сотрудников, занимающихся физикой высоких энергий. Однако вскоре эта технология нашла гораздо более широкое применение. Первые программы, демонстрирующие работу системы, были закончены в 1992 году и с тех пор WWW - наиболее динамичная и быстро развивающаяся часть Интернет.

Система WWW проста в использовании, что и предопределило ее успех. До появления World Wide Web Интернет была доступна только квалифицированным пользователям компьютера. Теперь же, не имеющие большого компьютерного опыта легко пользуются системой.

1.4 Поисковые системы и каталоги Интернет

В Интернет можно найти любую информацию из той, которая в ней имеется. Интернет - это гигантская библиотека. Как и во всякой библиотеке, здесь надо уметь пользоваться поисковым аппаратом. Как искать? Каталог информации и услуг, доступных в Интернет с помощью WWW, уже сегодня занял бы не один десяток томов печатного текста. Поэтому на первый план выходит проблема поиска нужной информации, которую помогают решить специализированные поисковые системы.

Пожалуй, самой полезной чертой Интернет является наличие в нем поисковых серверов. Это выделенные компьютеры, которые автоматически просматривают все ресурсы Интернет, которые могут найти, и индексируют их содержание. Затем имеется возможность передать такому серверу фразу или набор ключевых слов, описывающих интересующую тему, и сервер возвратит список ресурсов, соответствующих запросу.

Сегодняшние поисковые системы поддерживают индексы, включающие весьма значительную часть ресурсов Интернет. Таких серверов существует довольно-таки много, и вкупе они охватывают практически все доступные ресурсы. Если в Интернет есть информация, которая интересует обучающегося, то ее наверняка можно найти при помощи поисковых серверов. Это самое мощное средство нахождения ресурсов в сети. В каталогах Интернет хранятся тематически систематизированные коллекции ссылок на различные сетевые ресурсы, в первую очередь на документы World Wide Web. Ссылки в такие каталоги заносятся не автоматически, но их администраторами. Более того, занимающиеся этим люди стараются сделать свои коллекции наиболее полными, включающими все доступные ресурсы на каждую тему. В результате пользователю не нужно самому собирать все ссылки по интересующему его вопросу, но достаточно найти этот вопрос в каталоге - работа по поиску и систематизации ссылок уже сделана за него.


Глобальная сеть Интернет позволяет поддерживать такой важный режим связи, как телеконференции. Под компьютерной телеконференцией понимается специальным образом организованная область памяти на компьютере, поддерживающем работу телекоммуникационной системы. Все абоненты, имеющие доступ к этой области памяти (к телеконференции), имеют возможность, как получить на свой компьютер весь текст, который уже находился к этому моменту в этой области памяти, так и добавить к нему свой текст. По мере добавления к телеконференции текстов и реплик, присылаемых ее участниками, общий текст становится все более похожим на стенограмму обычной конференции. Отсюда и название - телеконференция.

Существует много видов телеконференций, отличающихся способами взаимодействия ее участников с компьютером (пользовательским интерфейсом), а также способами организации рубрик телеконференции. Различия определяются тем программным обеспечением, которое использует телекоммуникационная система для реализации режима телеконференций.

Однако, несмотря на различие телеконференций, всем им присуща одинаковая структура. Конференция начинается некоторым текстом, задающим ее тему. Далее каждый из участников имеет возможность добавить к этому тексту свою реплику. Все реплики располагаются последовательно по мере поступления и доступны вместе с исходным текстом всем участникам телеконференции. При последующих обращениях можно получать либо весь текст, либо только новые фрагменты текста. Каждый участник телеконференции имеет возможность работать в удобное для него время.

Участники телеконференции могут быть разбиты на группы для разработки отдельных тем, их доступ к отдельным темам может быть ограничен. Преподаватель может задавать наводящие вопросы, ставить новые проблемы, обращаться к отдельным участникам индивидуально. В общем, телеконференция предоставляют широкие возможности для организации учебного процесса. Однако каковы бы ни были задания или смысл всей телеконференции, это коллективная деятельность особого рода. Участники этой деятельности не видят друг друга, возможно незнакомыми никогда не познакомятся лично. Их работа в телеконференции растянута во времени, и происходит, как правило, на фоне основной деятельности, возможно не имеющей отношения к изучаемому материалу. Как бы то ни было, поведение участников телеконференций оказывается подверженным некоторым закономерностям, зная которые можно эффективно влиять на успешность самой телеконференции и, как следствие, успешность изучения того учебного материала, усвоению которого телеконференция посвящена.

Кроме того, конференции могут подразделяться: по способам доступа; по способам участия; по способам достижения цели. Что и показано в нижеследующей схеме.

Схема 2 - Способы конференций

1.6 Электронные библиотеки

Формы использования сетевых технологий в образовании могут быть различными. В принципе, хранение документов в электронном виде на носителе, доступном из сети, и в формате, интерпретируемом любым достаточно распространённым пользовательским программным пакетом, уже является образовательной сетевой технологией. Речь идёт о так называемых электронных библиотеках. Это могут быть и доступные только по ftp файловые хранилища, в которых документы рассортированы по каталогам в соответствии с тематикой, хронологией или форматом, а каждый каталог снабжен файлом описаний (file_id.diz, descript.ion, files.bbs, read.me и т.п.). Сетевые библиотеки с подобным устройством, хотя и продолжают сегодня существовать, но, безусловно, не являются массовыми, по крайней мере - самыми массовыми. Да и назвать такое файлохранилище библиотекой было бы не совсем верно - это больше похоже на домашнюю книжную полку.

В эпоху гипертекста и организованных баз данных для интерфейса сетевой библиотеки более характерно наличие гипертекстовой главной, титульной страницы и доступного с неё электронного каталога на базе какой-либо достаточно мощной СУБД (среды управления базами банных; чаще всего сегодня это MySQL) с возможностью поиска документа (записи) по различным ключам (автор, заглавие, тематика, контекст бибзаписи, любое встречающееся слово и т.д.) и сортировки по различным признакам.

Определение собственно ключей и признаков сортировки, т.е. классификация единиц хранения - очень важная часть организации сетевой библиотеки. Большая часть ныне существующих русскоязычных сетевых библиотек создавалась любителями, и классификация хранимых текстов в них оставляет желать много лучшего

Можно сказать, что российское интернет-библиотечное дело находится в зачаточном состоянии, что не удивляет: русскому сегменту сети Интернет недавно исполнилось всего десять лет.

Использование же российскими пользователями зарубежных сетевых хранилищ информации часто бывает затруднено недостаточным знанием английского языка, и отсутствием на многих российских рабочих станциях программ, способных интерпретировать форматы postscript и TeX/LaTeX.

Глава 2. Собственно образовательные сетевые технологии и ресурсы

.1 Желательные компоненты системы сетевого образования

Сами по себе хранилища информации, пусть и оснащённые достаточно удобным интерфейсом и общедоступные, можно считать образовательными порталами лишь с определенной натяжкой. Для того, чтобы информация служила образованию, желательны, кроме неё самой, ещё несколько элементов таких, как программа и методики усвоения информации; наставник; система проверки усвоенных знаний; способ удостоверения полученной в процессе образования квалификации. Схема иллюстрирует данные положения.

Схема 3 - Компоненты системы сетевого образования

электронный библиотека образование

2.2 Образовательные порталы и дистанционное образование

Для образования, получаемого по сети, в речь сегодня введён новый термин - дистанционное. От традиционного заочного дистанционное образование отличается тем, что получающий его, как правило, не имеет полноценного вербального и визуального контакта с преподавателем (преподавателями) даже эпизодически. Он не выезжает на установочные и экзаменационные сессии, не присутствует лично на лекциях и экзаменационных испытаниях. Обучение сводится к получению обучающимся по сети программы, методик, заданий и специальных текстов, ответу (по сети же) на контрольные вопросы и тесты и выполнению и отсылке в адрес учреждения дистанционного образования какой-то итоговой работы.

Реальный контроль за работой обучаемого фактически сведён к нулю, а потому не удивительно, что престиж дистанционного образования на сегодняшний день очень низок - даже в сравнении с престижем заочного. Безусловно, то же следует сказать и о его качестве.

Так или иначе, основным дистанционное образование на сегодняшний день быть не может. По крайней мере - в России, где эпоха сверхузких специалистов наступит, вероятно, ещё не скоро - в силу специфики национально-исторической ситуации.

Это связано с сегодняшним уровнем развития технологии. Вероятно, когда скорость обмена данными и качество представления этих данных на пользовательском терминале возрастут настолько, что смогут создавать хотя бы минимальный эффект присутствия, качество и, соответственно, престиж дистантного образования приблизятся к качеству и престижу очного, т.к. можно будет проводить вполне полноценные удалённые лекции, конференции, экзамены.

В какой-то степени это возможно и сегодня - при помощи webcam и программ типа NetMeeting, однако web-камеры пока являются слишком дорогим оборудованием для того, чтобы присутствовать на рабочих станциях достаточного количества обучаемых, а скорость подключения большинства рядовых рабочих станций к сети столь низка при, одновременно, весьма высокой оплате этого подключения, что и нормально и безболезненно для бюджета принять обучающемуся качественный видео-аудиопоток часто представляется мало возможным. Отсюда - простой (и фактически анонимный) обмен текстами и "птичками" при ответе на тесты.

Заключение

Научный подход к решению проблем информатизации образования ставит ближайшей целью задачу овладения обучающимися комплексом знаний, навыков, умений, выработки таких качеств личности, которые смогли бы обеспечить успешное выполнение задач профессиональной деятельности и комфортное существование в условиях информационного общества.

Технологическая направленность образования заключается в следующих направлениях его реализации:

внедрение средств НИТ в образовательный процесс;

повышение уровня компьютерной (информационной) подготовки участников образовательного процесса;

системная интеграция информационных технологий в образовании, поддерживающих процессы обучения;

построение и развитие единого образовательного информационного пространства.

Научные исследования, проведенные в Российском научно-исследовательском институте системной интеграции (Рос НИИ СИ) Министерства образования РФ, позволили выделить ряд актуальных информационных и телекоммуникационных технологий в средней и высшей школе России, среди них: 1. Электронный учебник; 2. Система мультимедиа; 3. Экспертная система; 4. Система автоматизированного проектирования; 5. Электронный библиотечный каталог; 6. Базы данных; 7. Локальные и распределенные (глобальные) вычислительные системы; 8. Электронная почта; 9. Голосовая электронная почта; 10. Электронная доска объявлений; 11. Система телеконференций; 12. Настольная электронная типография.

Доступность достигается за счет возможности получать образование различными слоями населения; в различных географических регионах; на различных технических платформах; на различных языках; в различных учебных заведениях.

Не вызывает сомнений, что всестороннее и полноценное использование преимуществ сетевого обучения позволит поднять образование на качественно новый, отвечающий постоянно растущим потребностям «информационного» общества уровень.

Список использованной литературы

1.Федеральный закон Российской Федерации от 29.12.2012 г. №217-ФЗ «Об образовании».

.Приказ Минобрнауки России от 6 мая 2005 г. № 137 «Об использовании дистанционных образовательных технологий».

Сегодня сети и сетевые технологии соединяют людей в любых уголках мира и обеспечивают им доступ к самой большой роскоши на свете - человеческому общению. Люди без помех общаются и играют с друзьями, находящимися в других частях света.

Происходящие события становятся известны во всех странах мира за считанные секунды. Каждый в состоянии подключиться к Интернету и выложить свою порцию информации.

Сетевые информационные технологии: корни их возникновения

Во второй половине прошлого века человеческой цивилизацией были сформированы две ее важнейшие научно-технические отрасли - компьютерные и Около четверти века обе эти отрасли развивались самостоятельно, и в их рамках были созданы соответственно компьютерные и телекоммуникационные сети. Однако в последней четверти ХХ столетия в результате эволюции и взаимопроникновения этих двух отраслей человеческого знания и возникло то, что мы называем термином «сетевая технология», являющимся подразделом более общего понятия «информационная технология».

В результате их появления в мире произошла новая технологическая революция. Подобно тому как за несколько десятилетий до нее поверхность суши покрылась сетью скоростных автомагистралей, в конце прошлого века все страны, города и села, предприятия и организации, а также индивидуальные жилища оказались связанными "информационными магистралями". При этом все они стали элементами различных сетей передачи данных между компьютерами, в которых были реализованы те или иные технологии передачи информации.

Технология сети: понятие и содержание

Сетевая технология представляет собой достаточный для построения некоторой целостный комплекс правил представления и передачи информации, реализуемых в виде так называемых «стандартных протоколов», а также аппаратных и программных средств, включающих сетевые адаптеры с драйверами, кабели и ВОЛС, различные коннекторы (разъемы).

"Достаточность" этого комплекса средств означает его минимализацию при сохранении возможности построения работоспособной сети. Она должна иметь потенциал совершенствования, например, за счет создания в ней подсетей, требующих применения протоколов различного уровня, а также спецкоммуникаторов, именуемых обычно «маршрутизаторами». После усовершенствования сеть становится надежнее и быстрее, но ценой появления надстроек над основной сетевой технологией, составляющей ее базис.

Термин "сетевая технология" наиболее часто применяется в вышеописанном узком смысле, однако зачастую он расширенно трактуется как любой набор средств и правил построения сетей определенного типа, например "технология локальных компьютерных сетей".

Прообраз сетевой технологии

Первым прообразом компьютерной сети, но еще не самой сетью, стали в 60-80-х гг. прошлого века многотерминальные системы. Представляя собой совокупность монитора и клавиатуры, располагающихся на больших расстояниях от больших ЭВМ и соединяющихся с ними посредством телефонных модемов или по выделенным каналам, терминалы выходили из помещений ИВЦ и рассредоточивались по всему зданию.

При этом, кроме оператора самой ЭВМ на ИВЦ, все пользователи терминалов получали возможность вводить с клавиатуры свои задания и наблюдать за их выполнением на мониторе, осуществляя и некоторые операции управления заданиями. Такие системы, реализующие как алгоритмы разделения времени, так и пакетной обработки, назывались системами удаленного ввода заданий.

Глобальные сети

Вслед за многотерминальными системами в конце 60-х гг. ХХ в. был создан и первый тип сетей - глобальные компьютерные сети (ГКС). Они связали суперкомпьютеры, существовавшие в единичных экземплярах и хранившие уникальные данные и ПО, с большими ЭВМ, находившимися от них на расстояниях до многих тысяч километров, посредством телефонных сетей и модемов. Эта сетевая технология была ранее апробирована в многотерминальных системах.

Первой ГКС в 1969 г. стала ARPANET, работавшая в Минобороны США и объединявшая разнотипные компьютеры с различными ОС. Они оснащались допмодулями для реализации коммуникационных общих для всех входящих в сеть компьютеров. Именно на ней были разработаны основы сетевых технологий, применяемые и в настоящее время.

Первый пример конвергенции компьютерных и телекоммуникационных сетей

ГКС достались в наследство линии связи от более старых и более глобальных сетей — телефонных, т. к. прокладывать новые линии большой протяженности было очень дорого. Поэтому многие годы в них использовались аналоговые телефонные каналы для передачи в данный момент времени только одного разговора. Цифровые данные передавались по ним с очень низкой скоростью (десятки кбит/с), а возможности ограничивались передачей файлов данных и электронной почтой.

Однако унаследовав телефонные линии связи, ГКС не взяли их основную технологию, основанную на принципе коммутации каналов, когда каждой паре абонентов на все время сеанса связи выделялся канал с постоянной скоростью. В ГКС использовали новые компьютерные сетевые технологии, основанные на принципе пакетной коммутации, при котором данные в виде небольших порций-пакетов с постоянной скоростью выдаются в некоммутируемую сеть и принимаются их адресатами в сети по адресным кодам, встроенным в заголовки пакетов.

Предшественники локальных сетей

Появление в конце 70-х гг. ХХ в. БИС привело к созданию мини-ЭВМ с невысокой стоимостью и богатыми функциональными возможностями. Они стали реально конкурировать с большими ЭВМ.

Широкую популярность приобрели мини-ЭВМ семейства PDP-11. Их стали устанавливать во все, даже очень небольшие производственные подразделения для управления техпроцессами и отдельными технологическими установками, а также в отделы управлений предприятий для выполнения офисных задач.

Возникла концепция распределенных по всему предприятию компьютерных ресурсов, хотя все мини-ЭВМ все еще работали автономно.

Появление LAN-сетей

К середине 80-х гг. ХХ в. были внедрены технологии объединения мини-ЭВМ в сети, основанные на коммутации пакетов данных, как и в ГКС.

Они превратили построение сети одного предприятия, называемую локальной (LAN - сеть), в почти тривиальную задачу. Для ее создания нужно только купить сетевые адаптеры под выбранную LAN-технологию, например, Ethernet, стандартную кабельную систему, установить на ее кабели коннекторы (разъемы) и соединить адаптеры с мини-ЭВМ и между собой посредством этих кабелей. Далее на ЭВМ-сервер устанавливалась одна из ОС, предназначенная для организации LAN - сети. После этого она начинала работать, и последующее присоединение каждой новой мини-ЭВМ не вызывало никаких проблем.

Неизбежность появления Интернета

Если появление мини-ЭВМ позволило распределить компьютерные ресурсы равномерно по территориям предприятий, то появление в начале 90-х гг. ПК обусловило их постепенное появление сначала на каждом рабочем месте любого работника умственного труда, а затем и в индивидуальных человеческих жилищах.

Относительная дешевизна и высокая надежность работы ПК сначала дали мощный толчок развитию LAN-сетей, а затем привели и к возникновению глобальной компьютерной сети - Интернета, охватившей сегодня все страны мира.

Размер Интернета каждый месяц прирастает на 7-10%. Он представляет собой ядро, связующее различные локальные и глобальные сети предприятий и учреждений во всем мире друг с другом.

Если на первом этапе через Интернет в основном передавались файлы данных и сообщения электронной почты, то сегодня он обеспечивает в основном удаленный доступ к распределенным информресурсам и электронным архивам, к коммерческим и некоммерческим информслужбам многих стран. Его архивы свободного доступа содержат сведения практически по всем областям знания и деятельности человека - от новых направлений в науке до прогнозов погоды.

Основные сетевые технологии LAN-сетей

Среди них выделяют базовые технологии, на которых может строиться базис любой конкретной сети. В качестве примера можно привести такие известные LAN-технологии как Ethernet (1980), Token Ring (1985) и FDDI (конец 80-х гг.).

В конце 90-х гг. в лидеры технологии LAN-сетей вышла технология Ethernet, объединившая классический его вариант со до 10 мбит/с, а также Fast Ethernet (до100 Мбит/c) и Gigabit Ethernet (до 1000 Мбит/c). Все Ethernet-технологии имеют близкие принципы работы, упрощающие их обслуживание и объединение построенных на их основе LAN-сетей.

В тот же период в ядра практически всех компьютерных ОС их разработчиками стали встраиваться сетевые функции, реализующие вышеперечисленные сетевые информационные технологии. Появились даже специализированные коммуникационные ОС вроде IOS компании Cisco Systems.

Как развивались ГКС-технологии

Технологии ГКС на аналоговых телефонных каналах из-за большого уровня искажений в них отличались сложными алгоритмами контроля и восстановления данных. Примером их является технология X.25 разработки еще начала 70-х гг. ХХ в. Более современные сетевые технологии - это frame relay, ISDN, ATM.

ISDN - аббревиатура, означающая «цифровую сеть с интеграцией услуг», позволяет проведение удаленных видеоконференций. Удаленный доступ обеспечивается установкой в ПК адаптеров ISDN, работающих во много раз быстрее любых модемов. Имеется и специальное ПО, позволяющее популярным ОС и браузерам работать с ISDN. Но дороговизна оборудования и необходимость прокладывать специальные линии связи тормозит развитие этой технологии.

Технологии глобальных сетей прогрессировали вместе с телефонными сетями. После появления цифровой телефонии была разработана спецтехнология Plesiochronous Digital Hierarchy (PDH), поддерживающая скорости до 140 Мбит/с и используемая для создания предприятиями их собственных сетей.

Новая технология Synchronous Digital Hierarchy (SDH) в конце 80-х гг. ХХ в. расширила пропускную способность цифровых телефонных каналов до 10 Гбит/c, а технология Dense Wave Division Multiplexing (DWDM) — до сотен Гбит/c и даже до нескольких Тбит/c.

Технологии Интернета

Сетевые основаны на использовании языка гипертекста (или HTML-языка) - спецязыка разметки представляющего собой упорядоченный набор атрибутов (тегов), внедряемых предварительно разработчиками интернет-сайтов в каждую их страницу. Конечно, речь в данном случае не идет о текстовых или графических документах (фотографиях, картинках), которые уже «скачаны» пользователем из Интернета, находятся в памяти его ПК и просматриваются через текстовые или Речь идет о так называемых веб-страницах, просматриваемых через программы-браузеры.

Разработчики интернет-сайтов создают их на HTML-языке (сейчас создано множество средств и технологий этой работы, обобщенно называемой «версткой сайтов») в виде совокупности веб-страниц, а владельцы сайтов помещают в интернет-серверы на условиях аренды у владельцев серверов их памяти (так называемого «хостинга»). Они круглосуточно работают в Интернете, обслуживая запросы его пользователей на просмотр загруженных в них веб-страниц.

Браузеры пользовательских ПК, получив через сервер своего интернет-провайдера доступ к конкретному серверу, адрес которого содержится в имени запрашиваемого интернет-сайта, получают доступ к этому сайту. Далее, анализируя HTML-теги каждой просматриваемой страницы, браузеры формируют ее изображение на экране монитора в том виде, как это было задумано разработчиком сайта - со всеми заголовками, цветами шрифта и фона, различными вставками в виде фото, диаграмм, картинок и т. п.

Что это такое - сетевая технология? Зачем она нужна? Для чего используется? Ответы на эти, а также на ряд других вопросов и будут даны в рамках данной статьи.

Несколько важных параметров

  1. Скорость передачи данных. От этой характеристики зависит, какое же количество информации (измеряется в большинстве случаев в битах) может быть передано через сеть за определённый промежуток времени.
  2. Формат кадров. Информация, которая передаётся через сеть, объединяется в пакеты информации. Они и называются кадрами.
  3. Тип кодирования сигналов. В данном случае решается, как же зашифровать информацию в электрических импульсах.
  4. Среда передачи. Такое обозначение используется для материала, как правило, это кабель, по которому и осуществляется проход потока информации, что в последующем и выводится на экраны мониторов.
  5. Топология сети. Это схематическое построение конструкции, по которой осуществляется передача информации. Используются, как правило, шина, звезда и кольцо.
  6. Метод доступа.

Набор всех этих параметров и определяет сетевую технологию, чем она является, какие приспособления использует и характеристики имеет. Как можете догадаться, их существует великое множество.

Общая информация

Но что же собой представляет сетевая технология? Ведь определение этому понятию так и не было дано! Итак, сетевая технология - это согласованный набор стандартных протоколов и программно-аппаратных средств, которые их реализовывают в объеме, достаточном для построения локальной вычислительной сети. Это определяет, как же будет получен доступ к среде передачи данных. В качестве альтернативы можно ещё встретить название «базовые технологии». Рассмотреть их все в рамках статьи не представляется возможным из-за большого количества, поэтому внимание будет уделено самым популярным: Ethernet, Token-Ring, ArcNet и FDDI. Что же они собой представляют?

Ethernet

На данный момент это самая популярная во всём мире сетевая технология. Если подведёт кабель, то вероятность того, что используется именно она, близка к ста процентам. Ethernet можно смело зачислять в наилучшие сетевые информационные технологии, что обусловлено низкой стоимостью, большой скоростью и качеством связи. Наиболее известным является тип IEEE802.3/Ethernet. Но на его основе было разработано два очень интересных варианта. Первый (IEEE802.3u/Fast Ethernet) позволяет обеспечить скорость передачи в 100 Мбит/секунду. У этого варианта существует три модификации. Разнятся они между собой по использованному материалу для кабеля, длине активного сегмента и конкретным рамкам диапазона передачи. Но колебания происходят в стиле «плюс-минус 100 Мбит/секунду». Другой вариант - это IEEE802.3z/Gigabit Ethernet. У него передающая способность равна 1000 Мбит/с. У этой вариации существует четыре модификации.

Token-Ring

Сетевые информационные технологии данного типа используются для создания разделяемой среды передачи данных, которая в конечном итоге образуется как объединение всех узлов в одно кольцо. Строится данная технология на звездно-кольцевой топологии. Первая идёт как основная, а вторая - дополнительная. Чтобы получить доступ к сети, применяется маркерный метод. Максимальная длина кольца может составлять 4 тысячи метров, а количество узлов - 260 штук. Скорость передачи данных при этом не превышает 16 Мбит/секунду.

ArcNet

Этот вариант использует топологию «шина» и «пассивная звезда». При этом он может строиться на неэкранированной витой паре и оптоволоконном кабеле. ArcNet - это настоящий старожил в мире сетевых технологий. Длина сети может достигать 6000 метров, а максимальное количество абонентов - 255. При этом следует отметить основной недостаток этого подхода - его низкую скорость передачи данных, которая составляет только 2,5 Мбита/секунду. Но эта сетевая технология всё ещё широко используется. Это происходит благодаря ее высокой надежности, низкой стоимости адаптеров и гибкости. Сети и сетевые технологии, построенные по другим принципам, возможно, и обладают более высокими показателями скорости, но именно из-за того, что ArcNet обеспечивает высокую доходимость данных, это позволяет нам не скидывать её со счетов. Важным преимуществом данного варианта является то, что используется метод доступа посредством передачи полномочий.

FDDI

Сетевые компьютерные технологии данного вида являются стандартизированными спецификациями архитектуры высокоскоростной передачи данных, использующей оптоволоконные линии. На FDDI значительным образом повлияли ArcNet и Token-Ring. Поэтому эту сетевую технологию можно рассматривать как усовершенствованный механизм передачи данных на основании имеющихся наработок. Кольцо этой сети может достигать в длину сто километров. Несмотря на значительное расстояние, максимальное количество абонентов, которые могут подключиться к ней, составляет только 500 узлов. Следует отметить, что FDDI считается высоконадежной благодаря наличию основного и резервного путей передачи данных. Добавляет ей популярность и возможность быстро передавать данные - примерно 100 Мбит/секунду.

Технический аспект

Рассмотрев, что собой представляют основы сетевых технологий, что используются, сейчас давайте уделим внимание тому, как же всё устроено. Первоначально следует отметить, что рассмотренные ранее варианты - это исключительно локальные средства соединения электронно-вычислительных машин. Но есть и глобальные сети. Всего их в мире около двух сотен. Как же работают современные сетевые технологии? Для этого давайте рассмотрим действующий принцип построения. Итак, есть ЭВМ, которые объединены в одну сеть. Условно они делятся на абонентские (основные) и вспомогательные. Первые занимаются всеми информационно-вычислительными работами. От них же зависит то, каковы будут ресурсы сети. Вспомогательные занимаются преобразованием информации и её передачей по каналам связи. Из-за того что им приходится обрабатывать значительное количество данных, серверы могут похвастаться повышенной мощностью. Но конечным получателем любой информации всё же являются обычные хост-ЭВМ, которые чаще всего представлены персональными компьютерами. Сетевые информационные технологии могут использовать такие типы серверов:

  1. Сетевой. Занимается передачей информации.
  2. Терминальный. Обеспечивает функционирование многопользовательской системы.
  3. Баз данных. Занимается обработкой запросов к БД в многопользовательских системах.

Сети коммутации каналов

Они создаются благодаря физическому соединению клиентов на то время, когда будут передаваться сообщения. Как это выглядит на практике? В таких случаях для отправки и получения информации от точки А до точки Б создаётся прямое соединение. Оно включает в себя каналы одного из множества (как правило) вариантов доставки сообщения. И созданное соединение для успешной передачи должно быть неизменным в течение всего сеанса. Но в таком случае проявляются довольно сильные недостатки. Так, приходится относительно долго ожидать соединения. Это сопровождается высокой стоимостью передачи данных и низким коэффициентом использования канала. Поэтому использование сетевых технологий данного типа не распространено.

Сети коммутации сообщений

В этом случае вся информация передаётся небольшими порциями. Прямое соединение в таких случаях не устанавливается. Передача данных осуществляется по первому же свободному из доступных каналов. И так до тех пор, пока сообщение не будет передано своему адресату. Сервера при этом постоянно занимаются приёмом информации, её сбором, проверкой и установлением маршрута. И в последующем сообщение передаётся далее. Из преимуществ необходимо отметить низкую цену передачи. Но в таком случае всё ещё существуют такие проблемы, как низкая скорость и невозможность осуществления диалога между ЭВМ в режиме реального времени.

Сети коммутации пакетов

Это самый совершенный и популярный на сегодняшний день способ. Развитие сетевых технологий привело к тому, что сейчас обмен информацией осуществляется посредством коротких пакетов информации фиксированной структуры. Что же они собой представляют? Пакеты - это части сообщений, что удовлетворяют определённому стандарту. Небольшая их длина позволяет предотвратить блокировку сети. Благодаря этому уменьшается очередь в узлах коммутации. Осуществляется быстрое соединение, поддерживается невысокий уровень ошибок, а также достигнуты значительные высоты в плане увеличения надежности и эффективности сети. Следует отметить и то, что существуют различные конфигурации этого подхода к построению. Так, если сеть обеспечивает коммутацию сообщений, пакетов и каналов, то она называется интегральной, то есть можно провести её декомпозицию. Часть ресурсов при этом может использоваться монопольно. Так, некоторые каналы могут применяться для того, чтобы передавать прямые сообщения. Они создаются на время передачи данных между разными сетями. Когда сеанс отправки информации заканчивается, то они распадаются на независимые магистральные каналы. При использовании пакетной технологии важным является настройка и согласование большого количества клиентов, линий связи, серверов и целого ряда иных устройств. В этом помогает установление правил, которые известны как протоколы. Они являются частью используемой сетевой операционной системы и реализуются на аппаратном и программном уровнях.

Если компьютеры работают независимо друг от друга, то приложения и ресурсы (например, принтеры или сканеры) придется дублировать для каждого из них. Например, если два аналитика хотят работать с таблицей Excel и ежедневно распечатывать результаты своей работы на принтере, оба используемых ими компьютера должны иметь свою копию программы Excel и принтер. Если бы пользователям понадобилось совместно применять свои данные, то эти данные пришлось бы непрерывно переносить между компьютерами при помощи дискет или CD-RW-дисков. А если бы пользователям понадобилось совместно применять свои компьютеры, то каждому из них пришлось бы приложить усилия, чтобы разобраться в другой системе -- ведь в каждой из них имеется своя организация рабочего стола и приложений, своя структура папок и т. д. Короче говоря, это был бы весьма неудобный, неэкономный процесс, который приводил бы к большому количеству ошибок. И чем больше пользователей подключается к этому процессу, тем быстрее наступает момент, когда им становится уже невозможно управлять. Однако, если бы те два ПК из нашего примера были соединены между собой в сеть, оба пользователя смогли бы применять одно приложение Excel, иметь доступ к одним и тем же исходным данным и потом отправлять результаты своей работы на один “общий” принтер, присоединенный к сети (хотя, нужно сказать, что в современных сетях чаще всего каждая рабочая станция имеет свои приложения, например, Excel, а данные использует совместно). Если бы к этой сети добавилось больше пользователей, то все они смогли бы совместно применять Excel, данные и ресурсы одинаковым образом. Другими словами, компьютеры, входящие в сеть, могут совместно использовать:

Документы (записки, электронные таблицы, счета и т. д.);

Электронные почтовые сообщения;

Программное обеспечение по работе с текстом;

Программное обеспечение по сопровождению проектов;

Иллюстрации, фотографии, видео- и аудиофайлы;

Живые аудио- и видеотрансляции;

Принтеры;

Дисководы CD-ROM и другие сменные запоминающие устройства (как, например, Zip-дисководы и Jaz-дисководы);

Жесткие диски.

Поскольку в одной компьютерной сети работает множество компьютеров, более эффективно управлять всей сетью из центральной точки (сетевой администратор, network administrator). Возьмем вышеприведенный пример и предположим, что нашим аналитикам дали новую версию программы Excel. Если их компьютеры не, объединены в сеть, то каждую систему придется модернизировать и проверять по отдельности. Это не так уж и сложно сделать, если систем только две. Но если в компании есть десятки или даже сотни персональных компьютеров, проводить индивидуальную модернизацию каждого из них, естественно, становится дорогим и неэффективным занятием. При наличии компьютерной сети, для того чтобы модернизировать приложение, такую модернизацию достаточно выполнить только один раз на сервере, после чего все рабочие станции данной компьютерной сети смогут сразу же начать использовать обновленное программное обеспечение (ПО). Централизованное администрирование также позволяет из одного места управлять безопасностью компьютерной сети и следить за ее работой.

Но кроме возможности совместного доступа к информации, компьютерные сети дают и другие преимущества. Сеть позволяет сохранять и защищать информацию. Например, очень трудно координировать и управлять процессом резервирования информации при большом количестве независимых друг от друга персональных компьютеров. Системы, организованные в компьютерную сеть, могут автоматически создавать резервные копии файлов в одном центральном месте (например, накопителе на магнитной ленте, подключенном к сетевому серверу). Если информация на каком-либо компьютере оказывается утраченной, ее можно будет легко найти в центральной системе резервирования и восстановить. Кроме того, повышается уровень безопасности данных. Получение доступа к отдельному персональному компьютеру, как правило, означает доступ ко всей информации, содержащейся в этом компьютере. Однако возможности безопасности, которые предоставляет компьютерная сеть, не позволят неавторизованным пользователям получить доступ к важной информации или удалить ее. Например, каждый сетевой пользователь имеет свое регистрационное (“логинное”) имя и пароль, которые дают доступ только лишь к ограниченному числу сетевых ресурсов. Наконец, компьютерные сети являются идеальными средами для общения между пользователями. Вместо того чтобы обмениваться бумажными напоминаниями и записками, электронная почта позволяет пользователям отправлять друг другу письма, отчеты, изображения -- почти все типы файлов. Это также позволяет сэкономить на распечатывании материалов и уменьшить задержки, связанные с доставкой переписки между отделами компании. Электронная почта -- это такой мощный инструмент, что он позволяет пользователям сети Интернет почти мгновенно обмениваться сообщениями, практически независимо от своего местоположения в мире.