Принципы работы транзистора. Принцип работы транзистора

В этой статье постараемся описать принцип работы самого распространенного типа транзистора — биполярного. Биполярный транзистор является одним из главных активных элементов радиоэлектронных устройств. Предназначение его – работа по усилению мощности электрического сигнал поступающего на его вход. Усиление мощности осуществляется посредством внешнего источника энергии. Транзистор — это радиоэлектронный компонент, обладающий тремя выводами

Конструкционная особенность биполярного транзистора

Для производства биполярного транзистора нужен полупроводник дырочного или электронного типа проводимости, который получают методом диффузии либо сплавления акцепторными примесями. В результате этого с обоих сторон базы образуются области с полярными видами проводимостей.

Биполярные транзисторы по проводимости бывают двух видов: n-p-n и p-n-p. Правила работы, которым подчинен биполярный транзистор, имеющий n-p-n проводимость (для p-n-p необходимо поменять полярность приложенного напряжения):

  1. Положительный потенциал на коллекторе имеет большее значение по сравнению с эмиттером.
  2. Любой транзистор имеет свои максимально допустимые параметры Iб, Iк и Uкэ, превышение которых в принципе недопустимо, так как это может привести к разрушению полупроводника.
  3. Выводы база — эмиттер и база — коллектор функционируют наподобие диодов. Как правило, диод по направлению база — эмиттер открыт, а по направлению база — коллектор смещен в противоположном направлении, то есть поступающее напряжение мешает протеканию электрического тока через него.
  4. Если пункты с 1 по 3 выполнены, то ток Iк прямо пропорционален току Iб и имеет вид: Iк = hэ21*Iб, где hэ21 является коэффициентом усиления по току. Данное правило характеризует главное качество транзистора, а именно то, что малый ток базы оказывает управление мощным током коллектора.

Для разных биполярных транзисторов одной серии показатель hэ21 может принципиально разниться от 50 до 250. Его величина так же зависит от протекающего тока коллектора, напряжения между эмиттером и коллектором, и от температуры окружающей среды.

Изучим правило №3. Из него вытекает, что напряжение, приложенное между эмиттером и базой не следует значительно увеличивать, поскольку, если напряжение базы будет больше эмиттера на 0,6…0,8 В (прямое напряжение диода), то появится крайне большой ток. Таким образом, в работающем транзисторе напряжения на эмиттере и базе взаимосвязаны по формуле: Uб =Uэ + 0,6В (Uб=Uэ+Uбэ)

Еще раз напомним, что все указанные моменты относятся к транзисторам, имеющим n-p-n проводимость. Для типа p-n-p все следует изменить на противоположное.

Еще следует обратить внимание на то, что ток коллектора не имеет связи с проводимостью диода, поскольку, как правило, к диоду коллектор — база поступает обратное напряжение. В добавок, ток протекающий через коллектор весьма мало зависит от потенциала на коллекторе (данный диод аналогичен малому источнику тока)

При включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.

Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу. Таки образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера. Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными.

В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток. Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов.

Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор – это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.

Виды транзисторов

Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.

Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда, что ускоряет работу.

Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:

  • мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
  • отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
  • переноса подвижных частиц;
  • стабильности при отклонениях температуры;
  • небольших шумов из-за отсутствия инжекции;
  • потребления малой мощности при работе.

Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.

Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.

Нельзя соединять параллельно , определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.

Биполярные транзисторы

Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.

Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.

Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.

Полевые транзисторы

Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:

  • с управляющим p-n-переходом;
  • транзисторы МДП с изолированным затвором.

Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.

Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.

Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники – сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла – затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.

Устройство и принцип работы для начинающих

Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние – в этом заключается двойная работа приборов.

Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:

  • выводы из металла;
  • диэлектрические изоляторы;
  • корпус транзисторов из стекла, металла, пластика, металлокерамики.

До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.

Преимущества и недостатки замены ламп транзисторами

Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:

  • небольшие габариты и малый вес, что важно для миниатюрной электроники;
  • возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
  • использование малогабаритных источников тока из-за потребности в низком напряжении;
  • мгновенное включение, разогревание катода не требуется;
  • повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
  • прочность и надежность;
  • слаженное взаимодействие с дополнительными элементами в сети;
  • стойкость к вибрации и ударам.

Недостатки проявляются в следующих положениях:

  • кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
  • при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
  • уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
  • чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.

Схемы включения

Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:

  • для биполярного транзистора;
  • полярного устройства;
  • с открытым стоком (коллектором).

Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.

Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:

  • с общим эмиттером (ОИ) – соединение, аналогичное ОЭ модуля биполярного типа
  • с единым выходом (ОС) – план по типу ОК;
  • с совместным затвором (ОЗ) – похожее описание ОБ.

В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.

Для чего нужны транзисторы?

Область применение разграничена в зависимости от типа прибора – биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.

Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.

Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:

  • в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
  • в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.

Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.

Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.

Транзисторы обоих видов используются в следующих случаях:

  1. В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
  2. В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
  3. В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.

Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.

Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.

Первоначальное название радиодетали – триод, по числу контактов. Этот радиоэлемент способен управлять током в электрической цепи, под воздействием внешнего сигнала. Уникальные свойства применяются в усилителях, генераторах и других аналогичных схемных решениях.

Обозначение транзисторов на схеме

Долгое время в радиоэлектронике царствовали ламповые триоды. Внутри герметичной колбы, в специальной газовой или вакуумной среде размещались три основных компонента триода:

  • Катод
  • Сетка

Когда на сетку подавался управляющий сигнал небольшой мощности, между катодом и анодом можно было пропускать несравнимо большие значения. Величина рабочего тока триода многократно выше, чем управляющего. Именно это свойство позволяет радиоэлементу выполнять роль усилителя.

Триоды на основе радиоламп работаю достаточно эффективно, особенно при высокой мощности. Однако габариты не позволяют применять их в современных компактных устройствах.

Представьте себе мобильный телефон или карманный плейер, выполненный на таких элементах.

Вторая проблема заключается в организации питания. Для нормального функционирования, катод должен быть сильно разогрет, чтобы началась эмиссия электронов. Нагрев спирали требует много электроэнергии. Поэтому ученые всего мира всегда стремились создать более компактный прибор с такими же свойствами.

Первые образцы появились в 1928 году, а в середине прошлого столетия был представлен работающий полупроводниковый триод, выполненный по биполярной технологии. За ним закрепилось название «транзистор».

Что такое транзистор?

Транзистор – полупроводниковый электроприбор в корпусе или без него, имеющий три контакта для работы и управления. Главное свойство такое же, как у триода – изменение параметров тока между рабочими электродами при помощи управляющего сигнала.

Благодаря отсутствию необходимости разогрева, транзисторы затрачивают мизерное количество энергии на обеспечение собственной работоспособности. А компактные размеры рабочего полупроводникового кристалла, позволяют использовать радиодеталь в малогабаритных конструкциях.

Благодаря независимости от рабочей среды, кристаллы полупроводника можно использовать как в отдельном корпусе, так и в микросхемах. В комплекте с остальными радиоэлементами, транзисторы выращивают прямо на монокристалле.

Выдающиеся механические свойства полупроводника нашли применение в подвижных и переносных устройствах. Транзисторы нечувствительны к вибрации, резким ударам. Обладают неплохой температурной стойкостью (при сильной нагрузке применяют радиаторы охлаждения).

Если рассматривать механические аналоги, то работа транзисторов напоминает принцип действия гидравлического усилителя руля в автомобиле. Но, сходство справедливо только при первом приближении, поскольку в транзисторах нет клапанов. В этой статье мы отдельно рассмотрим работу биполярного транзистора.

Устройство биполярного транзистора

Основой устройства биполярного транзистора является полупроводниковый материал. Первые полупроводниковые кристаллы для транзисторов изготавливали из германия, сегодня чаще используется кремний и арсенид галлия. Сначала производят чистый полупроводниковый материал с хорошо упорядоченной кристаллической решеткой. Затем придают необходимую форму кристаллу и вводят в его состав специальную примесь (легируют материал), которая придаёт ему определённые свойства электрической проводимости. Если проводимость обуславливается движением избыточных электронов, она определяется как донорная (электронная) n-типа. Если проводимость полупроводника обусловлена последовательным замещением электронами вакантных мест, так называемых дырок, то такая проводимость называется акцепторной (дырочной) и обозначается проводимостью p-типа.

Рисунок 1.

Кристалл транзистора состоит из трёх частей (слоёв) с последовательным чередованием типа проводимости (n-p-n или p-n-p). Переходы одного слоя в другой образуют потенциальные барьеры. Переход от базы к эмиттеру называется эмиттерным (ЭП), к коллектору – коллекторным (КП). На рисунке 1 структура транзистора показана симметричной, идеализированной. На практике при производстве размеры областей значительно ассиметричны, примерно как показано на рисунке 2. Площадь коллекторного перехода значительно превышает эмиттерный. Слой базы очень тонкий, порядка нескольких микрон.

Рисунок 2.

Принцип действия биполярного транзистора

Любой p-n переход транзистора работает аналогично . При приложении к его полюсам разности потенциалов происходит его "смещение". Если приложенная разность потенциалов условно положительна, при этом p-n переход открывается, говорят, что переход смещён в прямом направлении. При приложении условно отрицательной разности потенциалов происходит обратное смещение перехода, при котором он запирается. Особенностью работы транзистора является то, что при положительном смещении хотя бы одного перехода, общая область, называемая базой, насыщается электронами, или электронными вакансиями (в зависимости от типа проводимости материала базы), что обуславливает значительное снижение потенциального барьера второго перехода и как следствие, его проводимость при обратном смещении.

Режимы работы

Все схемы включения транзистора можно разделить на два вида: нормальную и инверсную .

Рисунок 3.

Нормальная схема включения транзистора предполагает изменение электрической проводимости коллекторного перехода путём управления смещением эмиттерного перехода.

Инверсная схема , в противоположность нормальной, позволяет управлять проводимостью эмиттерного перехода посредством управления смещением коллекторного. Инверсная схема является симметричным аналогом нормальной, но в виду конструктивной асимметрии биполярного транзистора малоэффективна для применения, имеет более жёсткие ограничения по максимально допустимым параметрам и практически не используется.

При любой схеме включения транзистор может работать в трёх режимах: Режим отсечки , активный режим и режим насыщения .

Для описания работы направление электрического тока в данной статье условно принято за направление электронов, т.е. от отрицательного полюса источника питания к положительному. Воспользуемся для этого схемой на рисунке 4.

Рисунок 4.

Режим отсечки

Для p-n перехода существует значение минимального напряжения прямого смещения, при котором электроны способны преодолеть потенциальный барьер этого перехода. То есть, при напряжении прямого смещения до этой пороговой величины через переход не может протекать ток. Для кремниевых транзисторов величина такого порога равна примерно 0,6 В. Таким образом, при нормальной схеме включения, когда прямое смещение эмиттерного перехода не превышает 0,6 В (для кремниевых транзисторов), ток через базу не протекает, она не насыщается электронами, и как следствие отсутствует эмиссия электронов базы в область коллектора, т.е. ток коллектора отсутствует (равен нулю).

Таким образом, для режима отсечки необходимым условием являются тождества:

U БЭ <0,6 В

I Б =0

Активный режим

В активном режиме эмиттерный переход смещается в прямом направлении до момента отпирания (начала протекания тока) напряжением больше 0,6 В (для кремниевых транзисторов), а коллекторный – в обратном. Если база обладает проводимостью p-типа, происходит перенос (инжекция) электронов из эмиттера в базу, которые моментально распределяются в тонком слое базы и почти все достигают границы коллектора. Насыщение базы электронами приводит к значительному уменьшению размеров коллекторного перехода, через который электроны под действием отрицательного потенциала со стороны эмиттера и базы вытесняются в область коллектора, стекая через вывод коллектора, обуславливая тем самым ток коллектора. Очень тонкий слой базы ограничивает её максимальный ток, проходящий через очень малое сечение поперечного разреза в направлении вывода базы. Но эта малая толщина базы обуславливает её быстрое насыщение электронами. Площадь переходов имеет значительные размеры, что создаёт условия для протекания значительного тока эмиттер-коллектор, в десятки и сотни раз превышающий ток базы. Таким образом, пропуская через базу незначительные токи, мы можем создавать условия для прохождения через коллектор токов гораздо большей величины. Чем больше ток базы, тем больше её насыщение, и тем больше ток коллектора. Такой режим позволяет плавно управлять (регулировать) проводимостью коллекторного перехода соответствующим изменением (регулированием) тока базы. Это свойство активного режима транзистора используется в схемах различных усилителей.

В активном режиме ток эмиттера транзистора складывается из тока базы и коллектора:

I Э = I К + I Б

Ток коллектора можно выразить соотношением:

I К = α I Э

где α – коэффициент передачи тока эмиттера

Из приведённых равенств можно получить следующее:

где β – коэффициент усиления тока базы.

Режим насыщения

Предел увеличения тока базы до момента, когда ток коллектора остаётся неизменным определяет точку максимального насыщения базы электронами. Дальнейшее увеличение тока базы не будет изменять степень её насыщения, и ни как не будет влиять на ток коллектора, может привести к перегреву материала в области контакта базы и выходу транзистора из строя. В справочных данных на транзисторы могут быть указаны величины тока насыщения и максимально допустимого тока базы, либо напряжения насыщения эмиттер-база и максимально допустимого напряжения эмиттер-база. Эти пределы определяют режим насыщения транзистора при нормальных условиях его работы.

Режим отсечки и режим насыщения эффективны при работе транзисторов в качестве электронных ключей для коммутации сигнальных и силовых цепей.

Отличие в принципе работы транзисторов с различными структурами

Выше был рассмотрен случай работы транзистора n-p-n структуры. Транзисторы p-n-p структуры работают аналогично, но есть принципиальные отличия, которые следует знать. Полупроводниковый материал с акцепторной проводимостью p-типа обладает сравнительно низкой пропускной способностью электронов, так как основан на принципе перехода электрона от одного вакантного места (дырки) к другому. Когда все вакансии замещены электронами, то их движение возможно только по мере появления вакансий со стороны направления движения. При значительной протяжённости участка такого материала он будет обладать значительным электрическим сопротивлением, что приводит к большим проблемам при его использовании в качестве наиболее массивных коллекторе и эмиттере биполярных транзисторов p-n-p типа, чем при использовании в очень тонком слое базы транзисторов n-p-n типа. Полупроводниковый материал с донорной проводимостью n-типа обладает электрическими свойствами проводящих металлов, что делает его более выгодным для использования в качестве эмиттера и коллектора, как в транзисторах n-p-n типа.

Эта отличительная особенность различных структур биполярных транзисторов приводит к большим затруднениям при производстве пар компонент с различными структурами и аналогичными друг другу электрическими характеристиками. Если обратить внимание на справочные данные характеристик пар транзисторов, можно заметить, что при достижении одинаковых характеристик двух транзисторов различных типов, например КТ315А и КТ361А, несмотря на их одинаковую мощность коллектора (150 мВт) и примерно одинаковый коэффициент усиления по току (20-90), у них отличаются максимально допустимые токи коллектора, напряжения эмиттер-база и пр.

P.S. Данное описание принципа действия транзистора было интерпретировано с позиции Русской Теории , поэтому здесь нет описания действия электрических полей на вымышленные положительные и отрицательные заряды. Русская Физика даёт возможность пользоваться более простыми, понятными механическими моделями, наиболее приближенными к действительности, чем абстракции в виде электрических и магнитных полей, положительных и электрических зарядов, которые вероломно подсовывает нам традиционная школа. По этой причине не рекомендую без предварительного анализа и осмысления пользоваться изложенной теорией при подготовке к сдаче контрольных, курсовых и иных видов работ, Ваши преподаватели могут просто не принять инакомыслие, даже конкурентоспособное и вполне состоятельное с точки зрения здравого смысла и логики. Кроме того, с моей стороны это первая попытка описания работы полупроводникового прибора с позиции Русской Физики, может уточняться и дополняться в дальнейшем.

Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.

Что такое транзистор?

Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.

Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры.

Времена, когда советские микросхемы были самыми большими в мире , прошли, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра!

Приставка нано- обозначает величину порядка десять в минус девятой степени.

Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.

Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор - прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки.

Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью – p (positive).

Как работает транзистор?

Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).

(далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий ), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором , базой и эмиттером . Устройство транзистора и его схематическое изображение показаны на рисунке ни же

Разделяют транзисторы прямой и обратной проводимости. Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.

Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).

Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.

Физические процессы в транзисторе

А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.

Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.

Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору.

Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.

Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если воспользоваться помощью специалистов нашего студенческого сервиса .

Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили , обращайтесь в Заочник.