Что такое транзистор – разновидности полупроводниковых приборов и способы проверки. Как устроен транзистор

13. Устройство и принцип действия транзисторов

В зависимости от принципа действия и конструктивных признаков транзисторы подразделяются на два больших класса: биполярные и полевые.

Биполярными транзисторами называют полупроводни­ковые приборы с двумя или несколькими взаимодействующими электрическими p-n-переходами и тремя выводами или более, усилительные свойства которых обусловлены явлениями инжекции и экстракции неосновных носителей заряда.

В настоящее время широко используют биполярные тран­зисторы с двумя p-n -переходами, к которым чаще всего и относят этот термин. Они состоят из чередующихся областей (слоев) полупроводника, имеющих электропроводности раз­личных типов. В зависимости от типа электропроводности наружных слоев различают транзисторы р-п-р и n-p-n -типов.

Транзисторы, в которых p-n-переходы создаются у повер­хностей соприкосновения полупроводниковых слоев, называют плоскостными

Биполярный транзистор представляет собой кристалл полупроводника, состоящий из трех слоев с че­редующейся проводимостью и снабженный тремя вывода­ми (электродами) для подключения к внешней цепи.

На рис. 1.5, а и б показано схемное обозначение двух типов транзисторов р-п-р-типа и п-р-п- типа. Крайние слои называют эмитте ром (Э) и коллектором (К), между ними находится база (Б). В трехслойной структуре имеются два p-n перехода: эмиттерный переход между эмитте­ром и базой и коллекторный переход между базой и кол­лектором. В качестве исходного материала транзисторов используют германий или кремний.

При изготовлении транзистора обязательно должны быть выполнены два условия:

    толщина базы (расстояние между эмиттерным и кол-

лекторным переходами) должна быть малой по сравнению с длиной свободного пробега носителей заряда;

2) концентрация примесей (и основных носителей) за­ряда в эмиттере должна быть значительно больше, чем в базе (N a >> N Д в р-п-р транзисторе).

Рассмотрим принцип действия р-п-р транзистора.

Транзистор включают последовательно с сопротивлением нагрузки Rк в цепь источника коллекторного напряжения Е к . На вход транзистора подается управляющая ЭДС Е Б ", как показано на рис. 1.6, а. Такое включение транзистора, когда входная (Е Б , R Б ) и выходная (Е К , R К ) цепи имеют общую точку - эмиттер, является наиболее рас-пространенным и называется включением с общим эмит-тером (ОЭ).

При отсутствии напряжений Б =0, Е К =0) эмиттер-ный и коллекторный переход находятся в состоянии рав-новесия, токи через них равны нулю. Оба перехода имеют двойной электрический слой, состоящий из ионов примесей, и потенциальный барьер  о, различный на каждом из переходов. Распределение потенциалов в транзисторе при отсутствии напряже­ний показано на рис. 1.6,б штриховой линией.

Полярность внешних источников Е Б и Е К выбирается такой, чтобы на эмиттерном переходе было прямое напряжение (минус источника Е Б подан на базу, плюс - на эмиттер), а на коллекторном переходе - обратное напряжение (минус источника Е К - на коллектор, плюс - на эмиттер), причем напряжение |Uкэ|> |Uбэ| (напряже­ние на коллекторном переходе Uкб = Uкэ-Uбэ) При таком включении источников Е Б и Е К распределение потенциалов в транзисторе имеет вид, показанный на рис. .1.6, б сплошной линией. Потенциальный барьер эмиттерного перехода,смещенного в прямом направлении, снижается, на коллекторном переходе потенциальный барьер увеличивается. В результате приложения к эмиттерному переходу прямого напряжения начинается усиленная диффузия (инжекция) дырок из эмиттера в базу. Электронной составляющей диффузионного тока через эмиттерный переход можно пренебречь, так как р р >>п п , поскольку выше оговаривалось условие N А >>N Д . Таким образом, ток эмиттера I Э = I Эдиф р . Под воздействием сил диффузии в результате перепада концентрации вдоль базы дырки продвигаются от эмиттера к коллектору. Поскольку база в транзисторе выполняется тонкой, основная часть дырок, инжектирован­ных эмиттером, достигает коллекторного перехода, не по­падая в центры рекомбинации. Эти дырки захватываются полем коллекторного перехода, смещенного в обратном на­правлении, так как это поле является ускоряющим для неосновных носителей - дырок в базе n-типа. Ток дырок, попавших из эмиттера в коллектор, замыкается через внешнюю цепь, источник Е К . При увеличении тока эмитте­ра на величину I Э ток коллектора возрастет на I К = I Э. Вследствие малой вероятности рекомбинации в тонкой базе коэффициент передачи тока эмиттера  =I К /I Э =0,9-0,99.

Небольшая часть дырок, инжектированных эмиттером, попадает в центры рекомбинации и исчезает, рекомбинируя с электронами. Заряд этих дырок остается в базе, и для восстановления зарядной нейтральности базы из внешней цепи за счет источника Ев в базу поступают элек­троны. Поэтому ток базы представляет собой ток реком­бинации I рек =I Э (1-) Помимо указанных основных составляющих тока тран­зистора надо учесть возможность перехода неосновных но­сителей, возникающих в базе и коллекторе в результате генерации носителей, через коллекторный переход, к кото­рому приложено обратное напряжение. Этот малый ток (переход дырок из базы в коллектор и электронов из кол­лектора в базу) аналогичен обратному току р-п перехода, он также называется обратным током коллекторного пере­хода или тепловым током и обозначается I кбо (рис. 1.6, а)

полевые транзисторы - полупроводни­ковые приборы, которые практически не потребляют ток из входной цепи.

Полевые транзисторы подразделяются на два типа, от­личающихся друг от друга принципом действия: а) с р-п переходом; б) МДП-типа.

. 1.6.1. Полевые транзисторы с р-п переходом имеют структуру, разрез которой приведен на рис. 1.9, а. Слой с проводимостью р-типа называется каналом, он имеет два вывода во внешнюю цепь: С - сток и И - исток. Слои с проводимостью типа п, окружающие канал, соединены между собой и имеют вывод во внешнюю цепь, называемый затвором 3. Подключение источников напряжения к прибо­ру показано на рис. 1.9, а, на рис. 1.9,6 показано схемное обозначение полевого транзистора с р-п переходом и кана­лом р-типа. Существуют также полевые транзисторы с ка­налом n-типа, их обозначение приведено на рис. 1.9, в, принцип действия аналогичен, но направления токов и поляр­ность приложенных напряжений противоположны.

Рассмотрим принцип действия полевого транзистора с каналом р-типа. На рис. 1.9, г приведено семейство стоко­вых (выходных) характеристик этого прибора Iс=f(Uси) при Uзи=const.

При управляющем напряжении Uзи = 0 и подключении источника напряжения между стоком и истоком U си по каналу течет ток, который зависит от сопротивления канала. Напряжение Uси равномерно приложено по длине канала, это напряжение вызывает обратное смещение р-п перехода между каналом р-типа и n-слоем, причем наибольшее об­ратное напряжение на р-п переходе существует в области, прилегающей к стоку, а вблизи истока р-п переход нахо­дится в равновесном состоянии. При увеличении напряже­ния U си область двойного электрического слоя р-п пере­хода, обедненная подвижными носителями заряда, будет расширяться, как показано на рис. 1.10, а. Особенно сильно расширение перехода проявляется вблизи стока, где больше обратное напряжение на переходе. Расширение р-п пе­рехода приводит к сужению проводящего ток канала тран­зистора, и сопротивление канала возрастает. Из-за увели­чения сопротивления канала при росте Uси стоковая характеристика полевого транзистора имеет нелинейный ха­рактер (рис. 1.9,г). При некотором напряжении U си гра­ницы р-п перехода смыкаются (пунктир на рис. 1.10, а), и рост тока Iс при увеличении Ucb прекращается.

При приложении положительного напряжения к затво­ру Uзи>0 р-п переход еще сильнее смещается в область обратного напряжения, ширина перехода увеличивается, как показано на рис. 1.10,6. В результате канал, проводя­щий ток, сужается и ток Iс уменьшается. Таким образом, увеличивая напряжение Uзи. можно уменьшить I с что видно из рассмотрения рис. 1.9, г. При определенном Uзи называемом напряжением отсечки, ток стока практически не протекает. Отношение изменения тока стока I C к вы­звавшему его изменению напряжения между затвором и ис­током Uзи при Uси =const называется крутизной: S = I C /Uзи при Uси = const

В отличие от биполярных транзисторов полевые транзи­сторы управляются напряжением, и через цепь затвора протекает только малый тепловой ток Iз р-п перехода, на­ходящегося под действием обратного напряжения.

Транзистором называется активный полупроводниковый прибор, при помощи которого осуществляется усиление, преобразование и генерирование электрических колебаний. Такое применение транзистора можно наблюдать в аналоговой технике. Кроме этого применяются и в цифровой технике, где они используются в ключевом режиме. Но в цифровой аппаратуре почти все транзисторы «спрятаны» внутри интегральных микросхем, причем в огромных количествах и в микроскопических размерах.

Здесь мы уже не будем слишком подробно останавливаться на электронах, дырках и атомах, о которых уже было рассказано в предыдущих частях статьи, но кое-что из этого, при необходимости, все же придется вспомнить.

Полупроводниковый диод состоит из одного p-n перехода, о свойствах которого было рассказано . Транзистор, как известно, состоит из двух переходов, поэтому можно рассматривать как предшественник транзистора, или его половину.

Если p-n переход находится в состоянии покоя, то дырки и электроны распределяются, как показано на рисунке 1, образуя потенциальный барьер. Постараемся не забыть условные обозначения электронов, дырок и ионов, показанные на этом рисунке.

Рисунок 1.

Как устроен биполярный транзистор

Условно биполярный транзистор можно нарисовать в виде пластины полупроводника с меняющимися областями разной проводимости, состоящие из двух p-n переходов. Причем крайние области пластины обладают проводимостью одного типа, а средняя область противоположного типа, каждая из областей имеет свой персональный вывод.

В зависимости от чередования этих областей транзисторы бывают p-n-p и n-p-n проводимости, соответственно.


А если взять и прикрыть одну любую часть транзисто, то у нас получится полупроводник с одним p-n переходом или диод. Отсюда напрашивается вывод, что биполярный транзистор условно можно представить в виде двух полупроводников с одной общей зоной, соединенных встречно друг к другу.

Часть транзистора, назначением которой является инжекция носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным, а та часть элемента, назначение которой заключается в выводе или экстракции носителей заряда из базы, получила название коллектор, и p-n переход коллекторный. Общую зону назвали базой.

Различие в обозначениях разных структур состоит лишь в направлении стрелки эмиттера: в p-n-p она направлена в сторону базы, а в n-p-n наоборот, от базы.

В чем разница между PNP и NPN транзисторами? Я постарался в этом видео показать разницу в работе двух видов биполярных транзисторов. Я использовал доступные радиодетали, такие как светодиод (и резистор для защиты), для демонстрации работы. В кпримера я использовал транзисторы типа 2n2907 и bc337. Регулировал напряжение с помощью переменного резистора (потенциометра).

В начальный период развития полупроводниковой электроники их изготавливали только из германия по технологии вплавления примесей, поэтому их назвали сплавными. Например, в основе кристалл германия и в него вплавляю маленькие кусочки индия.

Атомы индия проникаю в тело германиевого кристалла, создают в нем две области – коллектор и эмиттер. Между ними остается очень тонкая в несколько микрон прослойка полупроводника противоположного типа - база. А чтобы спрятать кристалл от света его прячут в корпус.

На рисунке показано, что к металлическому диску приварен кристаллодержатель, являющийся выводом базы, а снизу диска имеется ее наружный проволочный вывод.


Внутренние выводы коллектора и эмиттера приварены к проводникам внешних электродов.

С развитием электроники приступили к обработке кристаллов кремния, и изобрели кремниевые приборы, практически полностью отправившие на пенсию германиевые транзисторы.

Они способны работать с более высокими температурах, в них ниже значение обратного тока и более высокое напряжение пробоя.

Основным методом изготовления является планарная технологи. У таких транзисторов p-n переходы располагаются в одной плоскости. Принцип метода основывается на диффузии или вплавлении в пластину кремния примеси, которая может быть в газообразной, жидкой или твердой составляющей. При нагрева до строго фиксированной температуры осуществляется диффузия примесных элементов в кремний.

В данном случае один из шариков создает тонкую базовую область, а другой эмиттерную. В результате в кремнии образуются два p-n перехода. По этой технологии производят в заводских условиях наиболее распространенные типы кремниевых транзисторов.

Кроме того для изготовления транзисторных структур широко применяются комбинированные методы: сплавление и диффузия или различные варианты диффузии, например, двусторонняя или двойная односторонняя.

Проведем практический эксперимент, для этого нам потребуется любой транзистор и лампочка накаливания из старого фонарика и чуть-чуть монтажного провода для того, чтоб мы могли собрать эту схему.



Работа транзистора практический опыт для начинающих

Лампочка светится потому, что на коллекторный переход поступает прямое напряжение смещения, которое отпирает коллекторный переход и через него течет коллекторный ток Iк. Номинал его зависит от сопротивления нити лампы и внутреннего сопротивления батарейки или блока питания.

А теперь представим эту схему в структурном виде:

Так как в области N основными носителями заряда являются электроны, они проходя потенциальный барьер p-n переход, попадают в дырочную область p-типа и становятся неосновными носителями заряда, где начинают поглощаться основными носителями дырками. Таким же и дырки из коллектора, стремятся попасть в область базы и поглощаются основными носителями заряда электронами.

Так как база к минусу источника питания, то на нее будет поступать множество электронов, компенсируя потери из области базы. А коллектора, соединенный с плюсом через нить лампы, способен принять такое же число, поэтому будет восстанавливаться концентрация дырок.

Проводимость p-n перехода существенно возрастет и через коллекторный переход начнет идти ток коллектора . И чем он будет выше, тем сильнее будет гореть лампочка накаливания.

Аналогичные процесс протекают и в цепь эмиттерного перехода. На рисунке показан вариант подключения схемы для второго опыта.


Проведем очередной практический опыт и подключим базу транзистора к плюсу БП. Лампочка не загорается, так как p-n переход транзистора мы подсоединили в обратном направлении и сопротивление перехода резко возросло и через него следует лишь очень маленький обратный ток коллектора Iкбо не способный зажечь нить лампочки.

Осуществим, еще один интересный эксперимент подключим лампочку в соответствии с рисунком. Лампочка не светится, давайте разберемся почему.


Если приложено напряжение к эмиттеру и коллектору, то при любой полярности источника питания один из переходов будет в прямом, а другой в обратном включении и поэтому ток течь не будет и лампочка не горит.

Из структурной схемы очень хорошо видно, что эмиттерный переход смещен в прямом направлении и открыт и ожидает прием свободных электронов. Коллекторный переход, наоборот, подсоединен в обратном направлении и мешает попадать электронам в базу. Между коллектором и базой образуется потенциальный барьер, который будет оказывать току большое сопротивление и лампа гореть не будет.

Добавим к нашей схеме всего одну перемычку, которой соединим эмиттер и базу, но лампочка все равно не горит.


Тут, в принципе, все понятно при замыкании базы и эмиттера перемычкой коллекторный переход превращается в диод, на который поступает обратное напряжение смещение.

Установим вместо перемычки сопротивление Rб номиналом 200 – 300 Ом, и еще один источник питания на 1,5 вольта. Минус его соединим через Rб с базой, а плюс с эмиттером. И свершилось чудо, лампочка засветилась.


Лампа засветилась потому, что мы подсоединили дополнительный источник питания между базой и эмиттером, и тем самым подали на эмиттерный переход прямое напряжение, что привело к его открытию и через него потек прямой ток, который отпирает коллекторный переход транзистора. Транзистор открывается и через него течет коллекторный ток Iк, во много раз превышающий ток эмиттер-база. И поэтому этому току лампочка засветилась.

Если же мы изменим полярность дополнительного источника питания и на базу подадим плюс, то эмиттерный переход закроется, а за ним и коллекторный. Через транзистор потечет обратный Iкбо и лампочка перестанет гореть.

Основная функция резистора Rб ограничивать ток в базовой цепи. Если на базу поступит все 1,5 вольта, то через переход пойдет слишком большой ток, в результате которого произойдет тепловой пробой перехода и транзистор может сгореть. Для германиевых транзисторов отпирающее напряжение должно быть около 0,2 вольта, а для кремниевых 0,7 вольта.

Обратимся к структурной схеме: При подаче дополнительного напряжения на базу открывается эмиттерный переход и свободные дырки из эмиттера взаимопоглощаются с электронами базы, создавая прямой базовый ток Iб.

Но не все дырки, попадая в базу, рекомбинируются с электронами. Так как, область базы достаточно узкая, поэтому лишь незначительная часть дырок поглощается электронами базы.

Основной объем дырок эмиттера проскакивает базу и попадает под более высокий уровень отрицательного напряжения в коллекторе, и вместе с дырками коллектора текут к его отрицательному выводу, где и взаимопоглощается электронами от основного источника питания GB. Сопротивление коллекторной цепи эмиттер-база-коллектор резко падает и в ней начинает течь прямой ток коллектора Iк во много раз превышающий ток базы Iб цепи эмиттер-база.

Чем выше уровень отпирающего напряжения на базе, тем выше количество дырок попадает из эмиттера в базу, тем выше значение тока в коллекторе. И, наоборот, чем ниже отпирающее напряжение на базе, тем ниже ток в коллекторной цепи.

В этих экспериментах начинающего радиолюбителя по принципам работы транзистора, он находится в одном из двух состояний: открыт или закрыт. Переключение его из одного состояния в другое осуществляется под действием отпирающего напряжения на базе Uб. Этот режим работы транзистора в электроники получил название ключевым. Он используют в приборах и устройствах автоматики.

В режиме усиления транзистор усилитель работает в схемах приемников и усилителях звуковой частоты (УЗЧ и УНЧ). При работе применяются малые токи в базовой цепи, управляющие большими токами в коллекторе.В этом заключается и отличие режима усиления от режима переключения, который лишь открывает или закрывает транзистор в зависимости от напряжения на базе

Транзистор это очень распространенный активный радиокомпонент, который попадается почти во всех схемах, и очень часто, особенно во время эксперементальных курсов по изучению азов электроники, он выходит из строя. Поэтому без навыка проверки транзисторов, вам в электронику лучше не соваться. Вот и давайте разбираться, как проверить транзистор.

В свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.

Представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода . Поэтому транзистор можно представить в виде двух встречно включенных диода . В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.


База – слой полупроводника, который является основой конструкции транзистора.

Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

Как правило, эмиттер содержит намного большее количество основных зарядов, чем база. Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы. Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси .

Базу делают как можно более тонкой . Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора.

Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.

Принцип работы транзистора

Рассмотрим на примере p-n-p транзистора.


В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины.

Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном . Это будет соответствовать активному режиму работы транзистора. Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом к эмиттеру, а отрицательным к базе. Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ < Uк.


Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении. Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его. Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими.

Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы.

Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции .

Коэффициент инжекции стараются приблизить к 1.

Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода. Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу. Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем.

Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6. А так как дырки поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр. Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы.

Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы.

Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1.

Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора.

Обратный ток коллектора возникает в результате обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током .

От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее.

Коллекторный ток связан с эмиттерным коэффициентом передачи тока .

Токи в транзисторе можно представить следующим образом

Вне зависимости от принципа работы, полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала, чаще всего это - кремний, германий, арсенид галлия. В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов), металлические выводы.

Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от внешних воздействий. Однако, существуют также и бескорпусные транзисторы.

Принцип работы биполярного транзистора.

Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника в кристалле. В любом случае выводы называются - база, коллектор и эмиттер. Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора. Он имеет принципиально очень малую ширину. Носители заряда движутся от эмиттера через базу - к коллектору. Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого может являться разность напряжения между этими электродами.

Т.е. - для нормальной работы биполярного транзистора в качестве усилителя сигнала всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в прямом направлении. Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает так называемую - рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют режим - А. В этом режиме напряжение между коллектором и нагрузкой, примерно равно половине питающего напряжения - т. е выходное сопротивление транзистора и нагрузки примерно равны. Если подавать теперь на переход база - эмиттер сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер - коллектор будет изменяться, графически повторяя форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору протекающим. Причем амплитуда тока будет большей, нежели амплитуда входного сигнала - будет происходить усиление сигнала.

Если увеличивать напряжение смещения база - эмиттер дальше, это приведет к росту тока в этой цепи, и как результат - еще большему росту тока эмиттер - коллектор. В конце, концов ток перестает расти - транзистор переходит в полностью открытое состояние(насыщения). Если затем убрать напряжение смещения - транзистор закроется, ток эмиттер - коллектор уменьшится, почти исчезнет. Так транзистор может работать в качестве электронного ключа . Этот режим наиболее эффективен в отношении управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

Существует три вида подключения биполярного транзистора. С общим эмиттером (ОЭ) - осуществляется усиление как по току, так и по напряжению - наиболее часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой, так как значения их входного и выходного сопротивления относительно близки, если сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

С общим коллектором (ОК) осуществляется усиление только по току - применяется для согласования источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок. Например, в выходных каскадах усилителей и контроллеров.

С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом усиления. Например - в входных цепях радиоприемных устройств.

Принцип работы полевого транзистора.

Полевой транзистор, как и биполярный имеет три электрода. Они носят названия - сток, исток и затвор. Если на затворе отсутствует напряжение, а на сток подано положительное напряжение относительно истока, то между истоком и стоком через канал течет максимальный ток.

Т. е. - транзистор полностью открыт. Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока. Под действием электрического поля (отсюда и название транзистора) канал сужается, его сопротивление растет, а ток через него уменьшается. При определенном значении напряжения канал сужается до такой степени, что ток практически исчезает - транзистор закрывается.

На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).

Если на затвор этого прибора не подано положительное напряжение, то канал между истоком и стоком отсутствует и ток равен нулю. Транзистор полностью закрыт. Канал возникает при некотором минимальном напряжении на затворе(напряжение порога). Затем сопротивление канала уменьшается, до полного открывания транзистора.

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения: с общим истоком (ОИ) - аналог ОЭ биполярного транзистора; с общим стоком (ОС) - аналог ОК биполярного транзистора; с общим затвором (ОЗ) - аналог ОБ биполярного транзистора.

По рассеиваемой в виде тепла мощности различают:
маломощные транзисторы - до 100 мВт;
транзисторы средней мощности - от 0,1 до 1 Вт;
мощные транзисторы - больше 1 Вт.

Важные параметры биполярных транзисторов.

1. Коэффициент передачи тока(коэффициент усиления) - от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе) У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
3.Предельная частота, до которой коэффициент передачи тока выше 1. До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. - у высокочастотных.
4.Напряжение насыщения эмиттер-коллектор - величина падения напряжения между этими электродами у полностью открытого транзистора.

Важные параметры полевых транзисторов.

Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему его приращению напряжения затвор - исток, т. е.

ΔI d /ΔU GS

Это отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и измеряется в миллиамперах на вольт(мА /В).

Другие важнейшие параметры полевых транзисторов приведены ниже:
1. I Dmax - максимальный ток стока.

2.U DSmax - максимальное напряжение сток-исток.

3.U GSmax - максимальное напряжение затвор-исток.

4.Р Dmax - максимальна мощность, которая может выделяться на приборе.

5.t on - типовое время нарастания тока стока при идеально прямоугольной форме входного сигнала.

6.t off - типовое время спада тока стока при идеально прямоугольной форме входного сигнала.

7.R DS(on)max - максимальное значение сопротивления исток - сток в включенном(открытом) состоянии.


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт