Функции и команды системы Maxima. Математическая система Maxima Исследовать функцию с помощью скм maxima

Maxima - компьютерная система, позволяющая работать с символьными, численными выражениями. Поддерживает операции разложения в ряд, дифференцирования, преобразования Лапласа, интегрирования. Программе нестрашны обыкновенные дифференциальные уравнения, матрицы и тензоры, системы линейных уравнений, списки, векторы, многочлены, множества. Система компьютерных вычислений может производить расчёты с высокой степенью точности. Использует целые числа, дробные выражения. Приложение умеет строить графики в двухмерном либо трехмерном измерении. Имеет руководство, где подробно изложено, как работать с утилитой, какие операторы поддерживаются системой математических операций. Программа отлично подходит любителям компьютерной алгебры: студентам, преподавателям, аспирантам.



- Работает с математическими числовыми и символьными выражениями.
- Поддерживает работу со списками, многочленами, матрицами, тензорами, дифференциальными уравнениями и системами линейных уравнений.
- Поддерживает операции разложения в ряд, дифференцирования, преобразования Лапласа, интегрирования.
- Производит расчёты с высокой степенью точности.
- Использует целые числа, дробные выражения.
- Умеет строить графики в двухмерном либо трехмерном измерении.
- Подходит любителям компьютерной алгебры.
- Имеет доступную документацию для ознакомления с работой системы.
- Не влияет на производительность и скорость работы операционной среды.
- Есть поддержка русского языка.

Недостатки программы

- Отсутствует портативная (portable) версия.

- Процессор с тактовой частотой 1200 MHz или более мощный.
- Оперативная память 256 Мб или больше.
- Свободное место на жёстком диске от 185 Мб.
- Архитектура с разрядностью 32 бит или 64 бит (x86 или x64).
- Операционная система Windows XP, Windows Vista, Windows 7, Windows 8

Многофункциональные калькуляторы: Таблицы сравнения

Название программы На русском Дистрибутивы Инсталлятор Популярность Размер Индекс
★ ★ ★ ★ ★ 48.7 Мб 100
★ ★ ★ ★ ★ 59.8 Мб 99
★ ★ ★ ★ ★ 1.3 Мб 86

Интерфейс программы: русский

Платформа:XP / 7 / Vista

Производитель: Алексей Бешенов

Maxima – одно из самых мощных на сегодняшний день математических приложений, которое обладает множеством возможностей для вычислений довольно большого числа всевозможных функций. Само собой разумеется, что приложение является довольно специфичным продуктом, который вряд ли будет использовать обычный пользователь. Дело в том, что, прежде всего, программа рассчитана на научные и инженерные вычисления, хотя, может пригодиться и большому количеству студентов.

Основные возможности программы Maxima

Если говорить об основных возможностях этого уникального программного продукта, то сразу же стоит отметить то огромное количество функций, с которыми программа может работать. Сюда стоит отнести дифференцирование, интегральные функции, вычисление явных и неявных функций, работа с выражениями с плавающей запятой, распознавание систем линейных уравнений, преобразования Лапласа, разложение в ряд, вычисление матриц и тензоров, работа с системами уравнений, множествами, точными дробями, многочленами, векторами, построение графиков функций с использованием двумерного или трехмерного представления и многое другое. Наверное, на сегодняшний день нет такой области математических вычислений, которую бы не распознавала данная система.

Что касается интерфейса данного программного продукта, то он, не смотря на сложность самой программы, довольно прост. Основная панель имеет несколько типов меню, в которых, собственно и представлены все разделы математических вычислений. При использовании каждого из них, необходимо ввести изначальных задачу, а программа выдаст оптимальное решение в автоматическом режиме. Причем, в некоторых случаях возможно получить результат в виде подробнейшего доказательства со всеми расписанными процедурами и обоснованиями для принятия конечного результата.

Кроме того, любое решение можно с легкостью задать на печать или в некоторых случаях получить соответствующие графики. Надо сказать, что вся эта система не представляется какой-то обременительной, даже на кажущуюся сложность. Понятное дело, что такой мощный инструмент многим пользователям может придтись по вкусу. Наверняка, и инженерные работники, и научные умы, и студенты оценят ее огромные возможности, список поддерживаемых задач, а также, невообразимую скорость работы. Так что, если вам часто приходится сталкиваться с таким количеством математических вычислений, то лучшего программного продукта для такого типа задач вам просто не найти. В общем, приложение работает, что называется, на пять с плюсом.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЕЛЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. И. А. БУНИНА»

ЦЕНТР СВОБОДНОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Т. Н. Губина, Е. В. Андропова

РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ В СИСТЕМЕ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ MAXIMA

Учебное пособие

УДК 519.62+519.63+004.94 ББК 32.973.26-018

Печатается по решению редакционно-издательского совета Елецкого государственного университета имени И.А. Бунина от 27. 05. 2009 г., протокол № 2

Рецензенты:

О.Н. Масина , кандидат физико-математических наук, доцент (Елецкий государственный университет им. И.А Бунина); А. В. Якушин , кандидат педагогических наук, доцент

(Тульский государственный педагогический университет им. Л.Н. Толстого)

Т. Н. Губина, Е. В. Андропова

Г 93 Решение дифференциальных уравнений в системе компьютерной математики Maxima: учебное пособие. – Елец: ЕГУ им. И.А. Бунина, 2009. – 99 с.

Учебное пособие может быть использовано в рамках дисциплин математический анализ, дифференциальные уравнения, пакеты прикладных программ и др. на разных специальностях в учреждениях высшего профессионального образования, если государственным образовательным стандартом предусмотрено изучение раздела «Дифференциальные уравнения», а также в рамках курсов по выбору. Оно также может быть полезным для знакомства с системами компьютерной математики в профильных классах общеобразовательных учреждений с углубленным изучением математики и информатики.

УДК 519.62+519.63+004.94 ББК 22.1+22.18 Р30

© Губина Т.Н., Андропова Е.В., 2009

© ЕГУ им. И.А. Бунина, 2009

Предисловие ..................................................................................................................

Глава 1. Основы работы в системе компьютерной математики Maxima

1.1. О системе Maxima...................................................................................................

1.2. Установка Maxima на персональный компьютер.................................................

1.3. Интерфейс основного окна Maxima......................................................................

1.4. Работа с ячейками в Maxima..................................................................................

1.5. Работа со справочной системой Maxima..............................................................

1.6. Функции и команды системы Maxima..................................................................

1.7. Управление процессом вычислений в Maxima....................................................

1.8. Простейшие преобразования выражений.............................................................

1.9. Решение алгебраических уравнений и их систем................................................

1.10. Графические возможности...................................................................................

Глава 2. Численные методы решения дифференциальных уравнений

2.1. Общие сведения о дифференциальных уравнениях............................................

2.2. Численные методы решения задачи Коши для обыкновенного дифференци-

ального уравнения первого порядка............................................................................

2.2.1. Метод Эйлера.......................................................................................................

2.2.2. Метод Эйлера-Коши............................................................................................

2.2.3. Метод Рунге-Кутта 4 порядка точности............................................................

2.3. Решение краевых задач для обыкновенных дифференциальных уравнений

методом конечных разностей.......................................................................................

2.4. Метод сеток для решения дифференциальных уравнений в частных произ-

водных.............................................................................................................................

Глава 3. Нахождение решений дифференциальных уравнений в системе Maxima

3.1. Встроенные функции для нахождения решений дифференциальных уравне-

3.2. Решение дифференциальных уравнений и их систем в символьном

виде.................................................................................................................................

3.3. Построение траекторий и поля направлений дифференциальных уравне-

ний...................................................................................................................................

3.4. Реализация численных методов решения задачи Коши для обыкновенных

дифференциальных уравнений.....................................................................................

3.4.1. Метод Эйлера.......................................................................................................

3.4.2. Метод Эйлера-Коши............................................................................................

3.4.3. Метод Рунге-Кутта...............................................................................................

3.5. Реализация конечно-разностного метода решения краевой задачи для обык-

новенных дифференциальных уравнений...................................................................

3.6. Реализация метода сеток для дифференциальных уравнений в частных

производных...................................................................................................................

Задания для самостоятельного решения .................................................................

Литература ....................................................................................................................

Предисловие

Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Одной из основных особенностей дифференциальных уравнений является непосредственная связь теории дифференциальных уравнений с приложениями. Изучая какие-либо физические явления, исследователь, прежде всего, создает его математическую идеализацию или математическую модель, записывает основные законы, управляющие этим явлением, в математической форме. Очень часто эти законы можно выразить в виде дифференциальных уравнений. Такими оказываются модели различных явлений механики сплошной среды, химических реакций, электрических и магнитных явлений и др. Исследуя полученные дифференциальные уравнения вместе с дополнительными условиями, которые, как правило, задаются в виде начальных и граничных условий, математик получает сведения о происходящем явлении, иногда может узнать его прошлое и будущее .

Для составления математической модели в виде дифференциальных уравнений нужно, как правило, знать только локальные связи и не нужна информация обо всем физическом явлении в целом. Математическая модель дает возможность изучать явление в целом, предсказать его развитие, делать качественные оценки измерений, происходящих в нем с течением времени. На основе анализа дифференциальных уравнений были открыты электромагнитные волны.

Можно сказать, что необходимость решать дифференциальные уравнения для нужд механики, то есть находить траектории движений, в свою очередь, явилась толчком для создания Ньютоном нового исчисления. Через обыкновенные дифференциальные уравнения шли приложения нового исчисления к задачам геометрии и механики.

Учитывая современной развитие компьютерной техники и интенсивное развитие нового направления - компьютерной математики - получили широкое распространение и спрос комплексы программ, называемые системами компьютерной математики.

Компьютерная математика - новое направление в науке и образовании, возникшее на стыке фундаментальной математики, информационных и компьютерных технологий.

Система компьютерной математики (СКМ) - это комплекс программ, который обеспечивает автоматизированную, технологически единую и замкнутую обработку задач математической направленности при задании условия на специально предусмотренном языке.

Современные системы компьютерной математики представляют собой программы с многооконным графическим интерфейсом, развитой системой помощи, что облегчает их освоение и использование.

Основными тенденциями развития СКМ являются рост математических возможностей, особенно в сфере аналитических и символьных вычислений, существенное расширение средств визуализации всех этапов вычислений, широкое применение 2D- и 3D-графики, интеграция различных систем друг с другом

и другими программными средствами, широкий доступ в Internet, организация совместной работы над образовательными и научными проектами в Internet, использование средств анимации и обработки изображений, средств мультимедиа

и др.

Существенным обстоятельством, которое до недавнего времени препятствовало широкому использованию СКМ в образовании, является дороговизна профессионального научного математического обеспечения. Однако в последнее время многие фирмы, разрабатывающие и распространяющие такие программы, представляют (через Internet - http://www.softline.ru) для свободного использования предыдущие версии своих программ, широко используют систему скидок для учебных заведений, бесплатно распространяют демонстрационные или пробные версии программ .

Кроме того, появляются бесплатные аналоги систем компьютерной математики, например, Maxima, Scilab, Octave и др.

В настоящем учебном пособии рассматриваются возможности системы компьютерной математики Maxima для нахождения решений дифференциальных уравнений.

Почему именно Maxima?

Во-первых, система Maxima - это некоммерческий проект с открытым кодом. Maxima относится к классу программных продуктов, которые распространяются на основе лицензии GNU GPL (General Public License).

Во-вторых, Maxima - программа для решения математических задач как в численном, так и в символьном виде. Спектр ее возможностей очень широк: действия по преобразованию выражений, работа с частями выражений, решение задач линейной алгебры, математического анализа, комбинаторики, теории чисел, тензорного анализа, статистических задач, построение графиков функций на плоскости и в пространстве в различных системах координат и т.д.

В-третьих, в настоящее время у системы Maxima есть мощный, эффективный и «дружественный» кроссплатформенный графический интерфейс, который называется WxMaxima (http://wxmaxima.sourceforge.net).

Авторами книги уже на протяжении десяти лет изучаются системы компьютерной математики такие как Mathematica, Maple, MathCad. Поэтому, зная возможности этих программных продуктов, в частности для нахождения решений дифференциальных уравнений, хотелось изучить вопрос, связанный с организацией вычислений в символьном виде в системах компьютерной математики, распространяемых свободно.

Настоящее пособие рассказывает о возможностях организации процесса поиска решений дифференциальных уравнений на базе системы Maxima, содержит в себе общие сведения по организации работы в системе.

Пособие состоит из 3 глав. Первая глава знакомит читателей с графическим интерфейсом wxMaxima системы Maxima, особенностями работы в ней, синтаксисом языка системы. Начинается рассмотрение системы с того, где можно найти дистрибутив системы и как его установить. Во второй главе рассматриваются общие вопросы теории дифференциальных уравнений, численные методы их решения. Третья глава посвящена встроенным функциям системы

компьютерной математики Maxima для нахождения решений обыкновенных дифференциальных уравнений 1 и 2 порядка в символьном виде. Также в третьей главе показана реализация в системе Maxima численных методов решения дифференциальных уравнений. В конце пособия приведены задания для самостоятельного решения.

Мы надеемся, что пособием заинтересуется широкий круг пользователей и оно станет их помощником в освоении нового инструмента для решения математических задач.

Т.Н. Губина, Е.В. Андропова Елец, июль 2009

Глава 1 ОСНОВЫ РАБОТЫ В СИСТЕМЕ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ MAXIMA

1.1. О системе Maxima

В рамках проекта создания искусственного интеллекта в 1967 году в Массачусетском технологическом институте была инициирована разработка первой системы компьютерной алгебры Macsyma. Программа в течение многих лет использовалась и развивалась в университетах Северной Америки, где появилось множество вариантов системы. Maxima является одним из таких вариантов, созданным профессором Вильямом Шелтером (William Schelter) в 1982 году. В 1998 году он получил официальное разрешение Министерства энергетики США на выпуск Maxima под лицензией GPL. А начиная с 2001 года Maxima развивается как свободный международный проект, базирующийся на SourceForge .

В настоящее время Maxima - это система компьютерной математики, которая предназначена для выполнения математических расчетов (как в символьном, так и в численном виде) таких как:

– упрощение выражений;

– графическая визуализация вычислений;

– решение уравнений и их систем;

– решение обыкновенных дифференциальных уравнений и их систем;

– решение задач линейной алгебры;

– решение задач дифференциального и интегрального исчисления;

– решение задач теории чисел и комбинаторных уравнений и др.

В системе имеется большое количество встроенных команд и функций, а также возможность создавать новые функции пользователя. Система имеет свой собственный язык. Она также имеет встроенный язык программирования высокого уровня, что говорит о возможности решения новых задач и возможности создания отдельных модулей и подключения их к системе для решения определенного круга задач.

1.2. Установка Maxima на персональный компьютер

Свободно распространяемую версию дистрибутива Maxima, документацию на английском языке, типы и виды интерфейсов системы можно посмотреть и скачать с сайта программы http://maxima.sourceforge.net . На период написания пособия последняя версия дистрибутива - Maxima 5.18.1.

Сама по себе Maxima - консольная программа и все математические формулы «отрисовывает» обычными текстовыми символами.

Система является многоплатформенной, имеет небольшой размер дистрибутива (≈ 21,5 Мб), легко устанавливается, имеет несколько графических русифицированных интерфейсов: xMaxima, wxMaxima, TexMacs.

Наиболее дружественным, простым и удобным в работе графическим интерфейсом в настоящее время является интерфейс wxMaximа. Поэтому в дальнейшем будем использовать именно этот интерфейс.

Т.Н. Губина, Е.В. Андропова

Установка Maxima под управлением Windows

Полученный после скачивания файл, например maxima-5.18.1.exe (размер файла около 21,5 мегабайт), является исполняемым. Для начала установки программы достаточно нажать на него два раза левой кнопкой мыши. Сразу появится окно выбора локализации (выбираем русский язык).

В появившемся окне выбираем путь установки программы (можно оставить его без изменения).

Переходим к выбору устанавливаемых компонент. Из всего перечисленного для нас «лишними» являются Пакеты поддержки языков Maxima.

При установке желательно установить и графический интерфейс xMaxima, поскольку на нем базируется интерфейс wxMaxima и при решении некоторых задач он необходим, например, при выполнении графических построений.

В следующих окнах предлагается выбрать место размещения ярлыка для запуска программы (в меню «Пуск», на рабочий стол и т.д.). Завершающим этапом будет окно с предложением начать установку. По окончании установки выбираем «Далее» и «Завершить».

Таким образом, установка программы закончена.

Установка Maxima под управлением Linux

Maxima входит в состав многих дистрибутивов Linux, например, таких как AltLinux, Mandriva, Ubuntu, Fedora и др. В некоторых случаях может понадобиться доустановка с репозитория дистрибутива с помощью систем yum или synaptic.

Для установки в других дистрибутивах Linux необходимо использовать подходящий пакет системы Maxima, который можно скачать с сайта http://maxima.sourceforge.net.

Теперь можно приступать к работе с системой.

Учебное пособие ориентировано на работу с системой Maxima, установленную под управлением Linux. Заметим, что все рассматриваемые команды активны и в системе, установленной под управлением Windows.

Для начала познакомимся с интерфейсом основного окна программы.

1.3. Интерфейс основного окна Maxima

После запуска системы Maxima 5.18.1 с графическим интерфейсом wxMaximа появляется рабочее окно программы (Рис. 1).

Глава 1 Основы работы в системе компьютерной математики Maxima

Рис. 1. Вид рабочего окна системы Maxima

Структура окна, как видно из рисунка, имеет стандартный вид:

строка заголовка, в которой располагается название программы и информация о том, сохранен ли рабочий документ (если документ сохранен, то прописывается его имя);

панель меню программы – доступ к основным функциям и настройкам программы. В ней находятся функции для решения большого количества типовых математических задач, разделенные по группам: уравнения, алгебра, анализ, упростить, графики, численные вычисле-

ния. Заметим, что ввод команд через диалоговые окна упрощает работу с программой для начинающих пользователей;

панель инструментов - на ней находятся кнопки для создания нового документа, быстрого сохранения документа, вызова окна справки, создания ячеек ввода, прерывания вычислений, кнопки для работы с буфером обмена и др.;

рабочая область - непосредственно сам документ, в котором формируются ячейки ввода и выводятся результаты выполненных команд;

полосы прокрутки;

панель с кнопками - набор кнопок для быстрого вызова некоторых команд: упростить, решить уравнение или систему, построить график и др.;

строка состояния.

Т.Н. Губина, Е.В. Андропова

В системе Maxima команда - это любая комбинация математических выражений и встроенных функций. Каждая команда завершается символом «;», причем в случае его отсутствия система сама добавит этот символ.

1.4. Работа с ячейками в Maxima

После того, как система загрузилась, можно приступать к вычислениям. Для этого следует добавить так называемую ячейку ввода, в которую вводится команда системе выполнить какое-либо действие.

Систему можно использовать в качестве мощного калькулятора для нахождения значений числовых выражений. Например, для того, чтобы найти значение произведения 120 и 1243, надо:

– на панели инструментов нажать кнопку Insert input cell (или нажать на клавиатуре клавишу Enter). В результате в рабочей области будет сформирована ячейка ввода (Рис.2).

Рис.2. Формирование новой ячейки ввода

Рис.3. Выполнение вычислений в системе Maxima

Таким образом, в документе были сформированы две строки: (%i1) - ячейка ввода и для нее (%о1) - ячейка вывода. Каждая ячейка имеет свою метку - заключенное в скобки имя ячейки. Ячейки, в которых размещаются входные данные (формулы, команды, выражения) называют ячейками ввода . Они обозначаются %iChislo, где Chislo - номер ячейки ввода (i - сокращенно от английского слова input - ввод). Ячейки, в которых размеща-

У нас можно бесплатно скачать новую версию математического приложения Maxima на русском языке для Windows ХР / Vista / 7 / 8 / 10 с сервера или официального сайта.

Описание программы Maxima:

Maxima - система компьютерной алгебры, предназначенная для работы с символьными и численными выражениями, включающая интегрирование, дифференцирование, разложение в ряд, преобразование Лапласа, системы линейных уравнений, обыкновенные дифференциальные уравнения, множества, многочлены, списки, векторы, матрицы и тензоры.

Так как программа производит довольно серьёзные вычисления из области инженерии и высшей математики, то обычному пользователю она вряд ли понадобится. А вот специалисты производящие научные и инженерные вычисления, а также многие студенты оценят ее огромные возможности, список поддерживаемых задач и отличную скорость работы.

Maxima – одно из самых мощных на сегодняшний день математических приложений, которое обладает множеством возможностей для вычислений довольно большого числа всевозможных функций. Кроме выше перечисленных функций программа производит численные расчеты высокой точности, используя точные дроби, целые числа и числа с плавающей точкой произвольной точности. Система позволяет строить графики функций и статистических данных в двух и трех измерениях.

Наверное, на сегодняшний день нет такой области математических вычислений, которую бы не распознавала данная система.

Интерфейс программы. несмотря на её сложность, довольно прост. Основная панель управления имеет несколько разделов меню, в которых и представлены все методы математических вычислений. Для начала работы с каждым из разделов, пользователю необходимо ввести изначальную задачу, а программа выдаст оптимальное решение в автоматическом режиме.

Причем, в некоторых случаях возможно получить результат в виде подробнейшего доказательства со всеми расписанными процедурами и обоснованиями для принятия конечного результата.

Maxima является потомком легендарной системы компьютерной алгебры Macsyma, разработанной в начале 60-х в MIT. Это единственная основанная на Macsyma система, все еще публично доступная и имеющая активное сообщество пользователей благодаря своей открытости. В своё время Macsyma произвела переворот в компьютерной алгебре и оказала влияние на многие другие системы, в числе которых Maple и Mathematica.

Название Maxima
Версия 5.40.0
Язык Русский есть
Система Windows XP / Vista / 7 / 8 / 10
Разработчик

Так как в этом цикле статей речь пойдет о математической программе для символьных вычислений, для начала пару слов о том, что из себя представляют эти самые символьные или, как их еще называют, аналитические вычисления, в отличие от численных расчетов. Компьютеры, как известно, оперируют с числами (целыми и с плавающей запятой). К примеру, решения уравнения x 2 = 2 x + 1 можно получить как −0.41421356 и 2.41421356, а 3 x = 1 - как 0.33333333. А ведь хотелось бы увидеть не приближенную цифровую запись, а точную величину, т. е. 1±√2 в первом случае и 1/3 во втором. С этого простейшего примера и начинается разница между численными и символьными вычислениями. Но кроме этого, есть еще задачи, которые вообще невозможно решить численно. Например, параметрические уравнения, где в виде решения нужно выразить неизвестное через параметр; или нахождение производной от функции; да практически любую достаточно общую задачу можно решить только в символьном виде. Поэтому неудивительно, что и для такого класса задач появились компьютерные программы, оперирующие уже не только числами, а почти любыми математическими объектами, от векторов до тензоров, от функций до интегро-дифференциальных уравнений и т. д.

Максима в науке и образовании

Среди математического ПО для аналитических (символьных) вычислений наиболее широко известно коммерческое (Maple , Mathematica ); это очень мощный инструмент для ученого или преподавателя, аспиранта или студента, позволяющий автоматизировать наиболее рутинную и требующую повышенного внимания часть работы, оперирующий при этом аналитической записью данных, т. е. фактически математическими формулами. Такую программу можно назвать средой программирования, с той разницей, что в качестве элементов языка программирования выступают привычные человеку математические обозначения.

Программа, которая стала темой статьи, работает на тех же принципах и предоставляет похожий функционал; самое радикальное ее отличие - то, что она не является ни коммерческой, ни закрытой. Другими словами, речь идет о свободной программе. На самом деле использование свободного ПО более естественно для фундаментальной науки, нежели коммерческого, так как модель, которая используется в свободном ПО - это модель открытости и общедоступности всех наработок. Очевидно, эти же свойства присущи и результатам научной деятельности. Используя такую схожесть подходов, можно фактически рассматривать расширения функционала свободных программ или дополнительные библиотеки, которые могут создаваться для своих нужд в процессе научных исследований, как неотъемлемую часть результатов таких исследований. И эти результаты могут использоваться и распространяться на усмотрение пользователя без оглядки на ограничения, налагаемые лицензиями исходного ПО. В случае же коммерческого ПО, которое находится в собственности его производителя, такого рода свободы значительно ограничены, начиная от невозможности свободно (и законно) передавать само такое ПО вместе с наработками и вплоть до возможных патентных исков от компании-разработчика ПО в случае распространения самодельных дополнительных библиотек к нему.

С другой стороны, основное направление, кроме научных разработок, где такие программы востребованы - это высшее образование; а использование для учебных нужд именно свободного ПО - это реальная возможность и для вуза, и для студентов и преподавателей иметь в своем распоряжении легальные копии такого ПО без больших, и даже сколь-нибудь существенных, денежных затрат.

Эта статья открывает цикл, посвященный свободной программе аналитических вычислений Maxima . Этим циклом я постараюсь дать вам наиболее полное впечатление о программе: он будет посвящен как принципам и основам работы с Maxima, так и описанию более широких ее возможностей и практическим примерам.

Немного истории

История проекта, известного ныне под именем Maxima, началась еще в конце 60-х годов в легендарном MIT (Massachusetts Institute of Technology - Массачусетский Технологический институт), когда в рамках существовавшего в те годы большого проекта MAC началась работа над программой символьных вычислений, которая получила имя Macsyma (от MAC Symbolic MAnipulation). Архитектура системы была разработана к июлю 1968 г., непосредственно программирование началось в июле 1969. в качестве языка для разработки системы был выбран Lisp, и история показала, насколько это был правильный выбор: из существующих в то время языков программирования он единственный продолжает развиваться и сейчас - спустя почти полвека после старта проекта. Принципы, положенные в основу проекта, позднее были заимствованы наиболее активно развивающимися ныне коммерческими программами - Mathematica и Maple; таким образом, Macsyma фактически стала родоначальником всего направления программ символьной математики. Естественно, Macsyma была закрытым коммерческим проектом; его финансировали государственные и частные организации, среди которых были вошедшее в историю ARPA (Advanced Research Projects Agency; помните ARPAnet - предок интернета?), Энергетический и Оборонный Департаменты США (Departments of Energy & Defence, DOE and DOD). Проект активно развивался, а организации, контролирующие его, менялись не раз, как это всегда бывает с долгоживущими закрытыми проектами. в 1982 году профессор уильям Шелтер (William Schelter) начал разрабатывать свою версию на основе этого же кода, под названием Maxima. в 1998 году Шелтеру удалось получить от DOE права на публикацию кода по лицензии GPL. Первоначальный проект Macsyma прекратил свое существование в 1999 году. Уильям Шелтер продолжал заниматься разработкой Maxima вплоть до своей смерти в 2001 году. Но, что характерно для открытого ПО, проект не умер вместе со своим автором и куратором. Сейчас проект продолжает активно развиваться, и участие в нем является лучшей визитной карточкой для математиков и программистов всего мира.

Пару слов о программе

На данный момент Maxima выпускается под две платформы: Unix-совместимые системы, т. е. Linux и *BSD, и MS Windows. Я, конечно же, буду вести речь о Linux-версии.

Сама по себе Maxima - консольная программа, и все математические формулы отрисовывает обычными текстовыми символами. В этом есть как минимум два плюса. С одной стороны, саму Maxima можно использовать как ядро, надстраивая поверх нее графические интерфейсы на любой вкус. Их на сегодняшний день существует немало; в этот раз я остановлюсь на двух самых популярных (см. врезку) - и наиболее наглядных и удобных в работе, а об остальных поговорим в следующих выпусках; они тоже по-своему интересны, хотя более специфичны.

С другой стороны, сама по себе, без каких-либо интерфейсных надстроек, Maxima нетребовательна к железу и может работать на таких компьютерах, которые сейчас и за компьютеры уже никто не считает (это может оказаться актуальным, к примеру, для вуза или научной лаборатории, у которых денег на обновление парка машин скорее всего нет, а потребность в ПО для символьных вычислений возникнуть может).

Имена функций и переменных в Максиме чувствительны к регистру, то есть прописные и строчные буквы в них различаются. Это не будет в новинку любому, кто уже имел дело с POSIX-совместимыми системами или с такими языками программирования, как, скажем, C или Perl. Удобно это и с точки зрения математика, для которого тоже привычно, что заглавными и строчными буквами могут обозначаться разные объекты (например, множества и их элементы, соответственно).

Для того, чтобы начать работать с программой, вам понадобится пакет Maxima; если в стандартных репозитариях вашего дистрибутива его не окажется, то взять его можно на сайте проекта, адрес которого приведен во врезке.

Принципы работы с программой не зависят от того, какой интерфейс к ней вы выберете, поэтому я постараюсь Максимально абстрагироваться от конкретного интерфейса, ограничиваясь лишь небольшими комментариями в тех случаях, когда они ведут себя по-разному.

На данный момент последняя версия программы - 5.9.3, именно о ней я и буду говорить; если в вашем дистрибутиве пока присутствует более старая версия, вы в принципе можете использовать ее: и актуальная еще несколько месяцев назад 5.9.2, и вышедшая в конце прошлого года 5.9.1 не имеют с нынешней принципиальных различий.

Графические интерфейсы к Максиме

С точки зрения ознакомления с самой Maxima наибольший интерес представляют два интерфейса.

Первый - это отдельная самостоятельная графическая программа по имени . Она, как и сама Maxima, помимо Linux/*BSD существует еще и в версии для MS Windows. В wxMaxima вы вводите формулы в текстовом виде, а вывод Максимы отображается графически, привычными математическими символами. Кроме того, большой упор здесь сделан на удобство ввода: командная строка отделена от окна ввода-вывода, а дополнительные кнопки и система меню позволяют вводить команды не только в текстовом, но и в диалоговом режиме. Так называемое «автодополнение» в командной строке на самом деле с таковым имеет лишь то сходство, что вызывается клавишей « Tab ». Ведет же оно себя, к сожалению, всего лишь как умная история команд, т. е. вызывает ту команду из уже введенных в этой сессии, которая начинается с заданных в командной строке символов, но не дополняет до имен команд и их параметров. Таким образом, этот интерфейс наиболее удобен в том случае, когда вам нужно много вычислять и видеть результаты на экране; и еще, возможно, в том случае, если вы не очень любите вводить все команды с клавиатуры. Кроме того, wxMaxima предоставляет удобный интерфейс к документации по системе; хотя, так как документация поставляется в формате html, вместо этого можно использовать обычный браузер.


Второй достаточно интересный интерфейс к Maxima - это дополнительный режим в редакторе . Хотя этот редактор имеет общее историческое прошлое с широко известным Emacs, что явствует из названия, но практического сходства между ними мало. TeXmacs разрабатывается для визуального редактирования текстов научной тематики, при котором вы видите на экране редактируемый текст практически в том же виде, в котором он будет распечатан. В частности, он имеет так называемый математический режим ввода, очень удобный для работы с самыми разнообразными формулами, и умеет импортировать/экспортировать текст в LaTeX и XML/HTML. Именно возможностями по работе с формулами пользуется Maxima, вызванная из TeXmacs’а. Фактически, формулы отображаются в привычной математической нотации, но при этом их можно редактировать и копировать в другие документы наподобие обыкновенного текста. Maxima-сессия вызывается из меню: «вставить Сессия Maxima », при этом появляется дополнительное меню с командами Максимы. После запуска сессии можно уже внутри нее перейти в математический режим ввода (меню режимов ввода вызывается первой кнопкой на панели ввода) и при вводе также использовать элементы математической нотации. Этот интерфейс будет наиболее удобен тем, кто хочет использовать результаты вычислений в своих текстах и любит редактировать их в визуальном режиме.



Приступаем к работе

После запуска Maxima-сессии мы видим перед собой такие строки:

Maxima restarted. (%i1)

Первая - это сообщение о том, что ядро Максимы только что запустилось (вместо нее, в зависимости от версии и конкретной сборки, может выводиться краткая информация о программе); вторая - приглашение к вводу первой команды. Команда в Максиме - это любая комбинация математических выражений и встроенных функций, завершенная, в простейшем случае, точкой с запятой. После ввода команды и нажатия « Enter » Maxima выведет результат и будет ожидать следующей команды:


Для арифметических действий используются традиционные обозначения: - , + , * , / ; ** или ^ для возведения в степень, sqrt() для квадратного корня.

Если для каких-то обозначений будет неочевидно, как записать их в строку, я буду пояснять это по ходу изложения.

Как видите, каждая ячейка имеет свою метку; эта метка - заключенное в скобки имя ячейки. Ячейки ввода именуются как %i с номером (i от input - ввод), ячейки вывода - как %o с соответствующим номером (o от output - вывод). Со знака % начинаются все встроенные служебные имена: чтобы, с одной стороны сделать их достаточно короткими и удобными в использовании, а с другой - избежать возможных накладок с пользовательскими именами, которые тоже часто удобно делать короткими. Благодаря такому единообразию вам не придется запоминать, как часто бывает в других системах, какие из таких коротких и удобных имен зарезервированы программой, а какие вы можете использовать для своих нужд. К примеру, внутренними именами %e и %pi обозначены общеизвестные математические постоянные; а через %c с номером обозначаются константы, используемые при интегрировании, для которых использование буквы «c» традиционно в математике.

При вводе мы можем обращаться к любой из предыдущих ячеек по ее имени, подставляя его в любые выражения. Кроме того последняя ячейка вывода обозначается через % , а последняя ячейка ввода - через _ . Это позволяет обращаться к последнему результату, не отвлекаясь на то, каков его номер.

Здесь %+47/59 - то же самое, что %o1+47/59 .

Вывод результата вычисления не всегда нужен на экране; его можно заглушить, завершив команду символом $ вместо; . Заглушенный результат при этом все равно вычисляется; как видите, в этом примере ячейки %o1 и %o2 доступны, хотя и не показаны (к ячейке %o2 обращение идет через символ % , смысл которого расшифрован выше):

Каждую следующую команду не обязательно писать с новой строки; если ввести несколько команд в одну строчку, каждой из них все равно будет соответствовать свое имя ячейки. К примеру, здесь в строке после метки %i1 введены ячейки от %i1 до %i4 ; в ячейке %i3 используются %i1 и %i2 (обозначенная как _ - предыдущий ввод):


В wxMaxima и TeXmacs последнюю или единственную команду в строке можно не снабжать завершающим символом - это сработает так же, как если бы она была завершена; , т. е. вывод заглушен не будет. В дальнейших примерах я часто буду опускать; . Если вы выберете другой интерфейс, не забывайте ее добавлять.

Помимо использования имен ячеек, мы, естественно, можем и сами давать имена любым выражениям. По-другому можно сказать, что мы присваиваем значения переменным, с той разницей, что в виде значения такой переменной может выступать любое математическое выражение. Делается это с помощью двоеточия - знак равенства оставлен уравнениям, которые, учитывая общий математический контекст записи, проще и привычнее так читаются. И к тому же, так как основной конек Максимы - символьная запись и аналитические вычисления, уравнения достаточно часто используются. Например:

В каком-то смысле двоеточие даже нагляднее в таком контексте, чем знак равенства: это можно понимать так, что мы задаем некое обозначение, а затем через двоеточие расшифровываем, что именно оно обозначает. После того, как выражение поименовано, мы в любой момент можем вызвать его по имени:

Любое имя можно очистить от присвоенного ему выражения функцией kill() , и освободить занимаемую этим выражением память. Для этого нужно просто набрать kill(name) , где name - имя уничтожаемого выражения; причем это может быть как имя, назначенное вами, так и любая ячейка ввода или вывода. Точно так же можно очистить разом всю память и освободить все имена, введя kill(all) . В этом случае очистятся в том числе и все ячейки ввода-вывода, и их нумерация опять начнется с единицы. В дальнейшем, если по контексту будет иметься в виду логическое продолжение предыдущих строк ввода-вывода, я буду продолжать нумерацию (этим приемом я уже воспользовался выше). Когда же новый «сеанс» будет никак не связан с предыдущим, буду начинать нумерацию заново; это будет косвенным указанием сделать « kill(all) », если вы будете набирать примеры в Maxima, так как имена переменных и ячеек в таких «сеансах» могут повторяться.

Доступ к документации Максимы

В примерах выше мы воспользовались двумя встроенными функциями. Как нетрудно догадаться из контекста, solve - это функция решения уравнения, а diff - функция дифференцирования. Практически весь функционал Maxima реализован через такие встроенные функции. Функция в Maxima может иметь переменное число аргументов. Например, функция solve , которую мы использовали с одним аргументом, чаще вызывается с двумя аргументами. Первый задает уравнение или функцию, чьи корни надо найти; второй - переменную, относительно которой нужно решать уравнение:


Если формула, задающая решаемое уравнение, содержит только один символ, как в предыдущем примере, то второй аргумент можно опустить, так как выбор, относительно чего нужно решать уравнение, все равно однозначен.

Вторая функция из наших новых знакомых - diff - также может принимать один аргумент; в этом случае она находит дифференциал заданного выражения:

Через del(x) и del(y) здесь обозначены дифференциалы соответствующих символов.

Для каждой встроенной функции есть описание в документации по Maxima. Оно содержит сведения о том, какие аргументы и в каких вариантах принимает функция, а также описание ее действия в разных случаях и конкретные примеры применения. Но, конечно, искать описание каждой нужной функции в html-документации или info-страницах не всегда удобно, тем более, что нужна эта информация, как правило, прямо в процессе работы. Поэтому в Maxima есть специальная функция - describe() , которая выдает информацию из документации по конкретным словам. Более того, специально для удобства получения справочной информации существует сокращенная версия вызова этой функции: ? name вместо describe(name) . Здесь? - это имя оператора, и аргумент нужно отделять от него пробелом (выражение?name используется для вызова функции Lisp с именем name). Функция describe и оператор? выдают список тех разделов помощи и имен функций, которые содержат заданный текст, после чего предлагают ввести номер того раздела или описания той функции, которые вы хотите посмотреть:

Когда вы выберете раздел, будет выдано его содержимое:


Если для слова, которое вы ввели после? или describe , найдено единственное совпадение, его описание будет показано сразу.

Кроме справки, по многим функциям Maxima есть примеры их использования. Пример можно загрузить функцией example() . Вызов этой функции без аргумента отобразит список всех имен доступных примеров; вызов вида example(name) загрузит в текущую сессию и выполнит указанный файл примера:


Решение проблемы с запуском из-под TeXmacs

Если у вас возникли проблемы с запуском Maxima-сессии из TeXmacs, обратите внимание на то, кто у вас в системе выступает под именем /bin/sh . Дело в том, что инициализация всех разнообразных сессий реализована в TeXmacs’е через shell-скрипты, вызываемые именно с помощью /bin/sh . И в скрипте, отвечающем за сессию Maxima, используется возможность, которая не стандартизирована как обязательная для /bin/sh , но присутствует в его эмуляции bash. Другими словами, если у вас /bin/sh является не ссылкой на /bin/bash , а чем-то другим, то именно это может послужить причиной невозможности открыть Maxima-сессию (к примеру, в Debian и основанных на нем дистрибутивах кроме bash ссылку /bin/sh на себя может захотеть поставить еще и более легкий dash ; в этом случае восстановить статус-кво можно с помощью dpkg-reconfigure dash). Если сделать /bin/sh ссылкой на /bin/bash не представляется возможным, можете попробовать поменять #!/bin/sh на #!/bin/bash в файле /usr/lib/texmacs/TeXmacs/bin/maxima_detect . Я написал об этой проблеме разработчикам TeXmacs, но еще не получил никакой их реакции, так что не могу пока сказать, будет ли исправлена эта недоработка в ближайших версиях.

Основные принципы

То, что Максима написана на Lisp, человеку, знакомому с этим языком, становится понятно уже в начале работы с программой. Действительно, в Максиме четко прослеживается «лисповский» принцип работы с данными, который оказывается очень кстати в контексте символьной математики и аналитических вычислений. Дело в том, что в Lisp, по большому счету, нет разделения на объекты и данные: имена переменных и выражения могут использоваться практически в одном и том же контексте. В Maxima же это свойство развито еще сильнее: фактически, мы можем использовать любой символ вне зависимости от того, присвоено ли ему какое-то выражение. По умолчанию символ, связанный с любым выражением, будет представлять это выражение; символ, не связанный ни с чем, будет представлять самого себя, трактуемого опять-таки как выражение. Поясним на примере:

Из этого следует, в частности, что в выражение автоматически подставляется значение входящего в него символа только в том случае, если это значение было приписано символу до определения выражения:

Если некоторый символ уже имеет какое-то значение, можем ли мы использовать в выражении сам этот символ, а не его значение? Конечно. Сделать это можно с помощью знака апострофа - введенный перед любым символом или выражением, он предотвращает его вычисление:

Результат выражения %i12 был бы аналогичен и в том случае, если бы b и y не имели на тот момент никаких значений; таким образом, мы можем смело блокировать вычисление символа, даже не запоминая (или не зная), присвоены ли им вообще какие-то выражения.

Точно так же можно поступить с любой встроенной функцией, если мы хотим не выполнить ее, а использовать в своем математическом контексте. Например, уже упомянутая функция дифференцирования может пригодиться нам для обозначения производной в дифференциальном уравнении; в этом случае, конечно, вычислять ее не надо:

Благодаря описанным особенностям работа в Максиме, с одной стороны, становится во многом похожей на традиционную «ручную» работу с математическими формулами, что практически сводит на нет психологический барьер в начале работы с программой. С другой стороны, даже на этом начальном этапе вы фактически избавлены от наиболее рутинной ручной работы, вроде отслеживания текущих значений символов, и можете полностью сосредоточиться на самой задаче. Конечно, блокировка вычислений - это не единственный способ влиять на то, как Максима будет вычислять то или иное выражение; этим процессом можно управлять довольно гибко.