Беспроводная сеть Wi-Fi. Дополнительные методы защиты

Известно, что вскоре после изобретения радио появилась возможность передачи телеграфной связи без проводов. И, по сути, сегодняшние системы передачи цифрового кода по радиоканалу используют тот же принцип, но, конечно, возможности передачи данных возросли многократно.

о радиусу действия и назначению современные беспроводные сети можно разделить на персональные (Wireless Personal Area Network, WPAN), локальные (Wireless Local Area Network, WLAN), городские (Wireless Metropolitan Area Network, WMAN) и глобальные (Wireless Wide Area Network, WWAN) (рис. 1). Основные характеристики вышеперечисленных сетей представлены в табл. 1.


городские и глобальные

Персональные беспроводные сети (WPAN)

ерсональные сети (WPAN) служат прежде всего для связывания между собой компонентов компьютера в пределах малого радиуса действия — в так называемой персональной зоне. Почти к любому компьютеру подключено несколько устройств: монитор, клавиатура, мышь, принтер, каждое из которых подсоединяется к системному блоку с помощью кабелей, но гораздо удобнее использовать беспроводное подключение. Однако WPAN-сети нужны не только для подключения компьютерной периферии: по мере того как растет количество устройств, подключаемых к Сети (рис. 2), все актуальнее становится проблема их беспроводного соединения в персональной зоне.

Рис. 2. Рост числа устройств, подключаемых к Сети, млн. шт.

К категории WPAN относится целый ряд технологий. Самой старой из технологий передачи данных в пределах малого радиуса действия является IrDA — технология передачи данных в инфракрасном диапазоне, которая продвигается на рынке ассоциацией Infrared Data Association, а стандарт IrDA был разработан еще в 1993 году. Эта технология позволяет передавать данные в пределах свободного от препятствий пространства небольшого радиуса. Более современной (и в настоящее время массовой) является технология Bluetooth (BT). Для установления беспроводного соединения Bluetooth прямая видимость между устройствами не требуется, в отличие от инфракрасной связи. Перспективными являются технологии UWB (Ultrawideband) и ZigBee. Сравнительные характеристики и перспективы развития стандартов Bluetooth, Ultrawideband и ZigBee представлены на рис. 3.

Bluetooth

История Bluetooth началась в 1994 году с проекта шведской компании Ericsson по разработке системы локальной беспроводной связи радиотелефона с различными аксессуарами типа телефонной гарнитуры. В мае 1998 года Ericsson, IBM, Intel, Toshiba и Nokia объявили о создании специальной рабочей группы Bluetooth SIG (Bluetooth Special Interest Group) с целью продвижения и развития этой технологии. Радиосвязь Bluetooth осуществляется в диапазоне 2,4-2,48 ГГц. Спектр сигнала формируется по методу FHSS (Frequency Hopping Spread Spectrum — широкополосный сигнал по методу частотных скачков), согласно которому несущая частота сигнала скачкообразно меняется 1600 раз в секунду. Последовательность переключения между частотами для каждого соединения известна только передатчику и приемнику, что позволяет обеспечить конфиденциальность передачи данных и исключить помехи, если рядом работают несколько пар «приемник—передатчик».

На базе универсального приемопередатчика обеспечивается связь с любыми Bluetooth-решениями, причем главным образом используются два варианта исполнения: либо Bluetooth-ключ (Bluetooth-dongle) (рис. 4), либо подключаемые к специализированным материнским платам Bluetooth-адаптеры. На основе Bluetooth-технологии можно создать персональную беспроводную сеть. На рис. 4 показано, что ноутбук с USB-ключом может взаимодействовать посредством беспроводной связи с мобильным телефоном, PDA и другими компьютерами. Bluetooth обеспечивает обмен информацией между такими устройствами, как ПК, ноутбуки, PDA, мобильные телефоны, принтеры и цифровые фотоаппараты, в радиусе от 10 до 100 м друг от друга и даже в разных помещениях.


с различными Bluetooth-устройствами

Поставки мобильных устройств с Bluetooth-функциональностью постоянно увеличиваются. По прогнозам IDC, к 2007 году количество подобных устройств составит около 430 млн. шт. (рис. 5).


(в млн. штук) с Bluetooth-функциональностью (источник: IDC)

ZigBee

ZigBee — беспроводная сетевая технология короткого радиуса действия, базирующаяся на стандарте IEEE 802.15.4. Данная технология была разработана с целью обеспечения более дешевого и менее энергоемкого решения по сравнению с другими WPAN-технологиями, в частности с Bluetooth. Для обеспечения совместимости устройств данного класса в 2002 году по инициативе компании Philips был образован Альянс ZigBee (ZigBee Alliance), в который сегодня входят компании из 22 стран. Протоколы ZigBee разработаны с учетом максимального энергосбережения: большую часть времени устройства находятся в спящем режиме и только изредка проверяют, поступили ли к ним обращения. Дальность связи между двумя аппаратами — до 75 м. В табл. 2 представлено сравнение стандартов ZigBee 802.15.4 и Bluetooth 802.15.1.

Таблица 2. Сравнение стандартов ZigBee 802.15.4 и Bluetooth 802.15.1

В настоящее время технология применяется в основном в сенсорных системах, но ее сторонники считают, что она может использоваться для соединения практически любых электронных устройств. В частности, фирма Pantech-Curitel уже выпустила смартфон с интерфейсом ZigBee. Ожидается, что данная технология будет применяться в разнообразных беспроводных средствах сигнализации (задымление, температура, шум, влажность, движение и т.п.), для управления устройствами «умного» дома.

UWB

Ultrawideband (UWB) — сверхширокополосная связь — получила такое название благодаря тому, что в этом стандарте используется самый широкий из распространенных сегодня технологий диапазон частот. Эта беспроводная технология предназначена для передачи данных на короткие (до 10 м) расстояния с высокой пропускной способностью (до 480 Мбит/с) и низкой потребляемой мощностью. UWB обеспечивает передачу видео между устройствами бытовой электроники и периферийными устройствами ПК. Одно из основных преимуществ этой технологии заключается в том, что она не создает помех для других беспроводных технологий, используемых в настоящее время, — таких как Wi-Fi, WiMAX и сотовая связь.

Локальные беспроводные сети (WLAN)

ехнологии WLAN базируются на семействе стандартов 802.11 (табл. 3). Многие организации и домашние пользователи используют Wi-Fi (Технологии WLAN, базирующиеся на семействе стандартов 802.11, часто обозначают термином Wi-Fi. Изначально данный термин был введен организацией Wi-Fi Alliance, для обозначения продуктов серии стандарта 802.11b, однако сегодня этот термин применятся для продуктов, соответствующих любому стандарту из семейства 802.11) как альтернативу проводным локальным сетям (рис. 6 и 7). Помимо беспроводных домашних и офисных сетей технология Wi-Fi нашла широкое применение в сфере организации публичного доступа в Интернет (рис. 8).

Рис. 7. Схема использования WLAN в крупном офисе

Во многих аэропортах, отелях, ресторанах публичный доступ (платный или бесплатный) к Wi-Fi-сетям реализован посредством так называемых хот-спотов. Каждый посетитель заведения, в котором есть хот-споты, получает возможность мобильного подключения к Сети с помощью своего ноутбука, КПК или телефона, поддерживающего стандарт беспроводного доступа. В зависимости от конкретного стандарта сети Wi-Fi работают на частотах 2,4 или 5 ГГц и обеспечивают скорость передачи данных до 54 Мбит/с (см. табл. 3). Зону беспроводного доступа на базе нескольких хот-спотов называют хот-зоной.

Радикальное увеличение пропускной способности дает стандарт 802.11n (рис. 9), с появлением которого пропускная способность WLAN будет увеличена сразу в несколько раз. Специалисты сходятся во мнении, что в ближайшее время технологию беспроводных сетей 802.11n станут поддерживать не только ноутбуки, но и многие бытовые электронные приборы и она будет использоваться всеми основными корпоративными и домашними приложениями. В качестве перспективы развития беспроводных локальных и персональных сетей (см. рис. 9) специалисты называют устройства Cognitive Radios, которые способны работать в разных диапазонах по различным протоколам, а также могут определять, в каком географическом районе они находятся и как там можно работать, подстраиваясь под местные требования.


(источник: Dell, 2005)

Продажи ноутбуков и развитие Wi-Fi-систем взаимно стимулируют друг друга. Возможность беспроводного доступа все чаще рассматривается пользователем как необходимая опция при выборе ноутбука. По прогнозам In-Stat/MDR (www.instat.com), к 2008 году во всем мире будет развернуто более 200 тыс. общедоступных точек беспроводного доступа.

В России количество хот-спотов пока невелико. Так, на конец 2004 года в России официально было развернуто около 200 хот-спотов, причем 55% из них приходилось на Москву, 24% — на Петербург. На момент написания данной статьи в каталоге хот-спотов в России (Wi-Fi CNews; http://wifi.cnews.ru) значилось 633 точки беспроводного доступа. К 2008 году количество хот-спотов в России может вырасти до 1250-1500, пользоваться ими на регулярной основе будут 25-30 тыс. человек; при этом бизнес-пользователи составят более половины.

Одним из крупных проектов по развертыванию сети хот-спотов является проект «Яндекс.Wi-Fi» (wifi.yandex.ru). На конец марта этого года число хот-спотов, развернутых в рамках данного проекта, составило 233 единицы. Партнерами проекта являются рестораны, клубы, Интернет-кафе, парикмахерские, автосалоны и другие места, где людям приходится ждать обслуживания. Основная часть проекта реализована в Москве (табл. 4), регионы пока охвачены слабо (табл. 5).

Таблица 4. Хот-споты, развернутые в Москве в рамках проекта «Яндекс.Wi-Fi»

Глобальные беспроводные сети (WWAN)

тандарты сетей WWAN принято делить на поколения (рис. 10). К первому (The 1st Generation, 1G) относятся аналоговые стандарты, которые постепенно ушли в прошлое. Говоря о втором поколении, прежде всего следует сказать о GSM (Global Standard for Mobile Communications) — глобальном стандарте для мобильной сотовой связи с разделением канала по принципу TDMA (Time Division Multiple Access), подразумевающему множественный доступ с разделением по времени. При этом способе использования радиочастот в одном частотном слоте находится несколько абонентов, а разные абоненты применяют разные временные слоты для передачи. В сотовых цифровых сетях стандарта GSM может передаваться не только оцифрованная речь, но и цифровые данные. Первые сети GSM появились в начале 90-х годов, когда основное внимание уделялось обеспечению ими услуг речевой связи на более высоком уровне по сравнению с существовавшими ранее аналоговыми сотовыми системами.

Абоненты сетей GSM могут пользоваться услугами мобильного модема, получать доступ к компьютерным системам их офисов, посылать и принимать сообщения электронной почты. Одним из основных недостатков таких сетей является низкая скорость передачи.

Возможности мобильного доступа в Интернет были значительно расширены с переходом на использование технологии GPRS (General Packet Radio Service — пакетная передача данных по радиосетям), но радикальное увеличение произошло в высокопроизводительных сотовых сетях третьего поколения (3G). Поскольку функциональные возможности сети GPRS скромнее, чем у полноценной сети третьего поколения, то данный стандарт получил название 2,5G, что отражает его переходное состояние от второго поколения к третьему. Стратегия перехода к сетям 3G и 4G показана на рис. 11 и 12 соответственно, а краткие характеристики стандартов мобильной связи представлены в табл. 6.

В конце прошлого года абонентами сотовой связи по всему миру являлись 2,14 млрд. человек, то есть почти каждый третий был абонентом какой-либо сети сотовой связи, а к концу 2008-го это число превысит 3 млрд. Самых высоких показателей роста следует ожидать от стран Африки, а также от китайского и индийского рынков, где стоимость сотовой связи должна к 2008 году значительно уменьшиться из-за усиливающейся конкуренции между операторами.

По мнению аналитиков ABI Research, текущий год уже вполне можно назвать годом 3G-телефонии. Тенденция роста числа WCDMA-абонентов прослеживается очень четко: в прошлом году их число увеличилось по сравнению с 2004-м на 142%. Ожидается, что к 2010 году количество подписчиков мобильных сетей связи третьего поколения должно превысить 1 млрд.

Беспроводные компьютерные сети - это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Стандарт IEEE 802.11 определяет два режима работы сети - Ad-hoc и клиент-сервер. Режим Ad-hoc (иначе называемый называемый «точка-точка») - это простая сеть, в которой связь между станциями (клиентами) устанавливается напрямую, без использования специальной точки доступа. В режиме клиент-сервер беспроводная сеть состоит, как минимум, из одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных клиентских станций. Поскольку в большинстве сетей необходимо обеспечить доступ к файловым серверам, принтерам и другим устройствам, подключенным к проводной локальной сети, чаще всего используется режим клиент-сервер.

Без подключения дополнительной антенны устойчивая связь для оборудования IEEE 802.11b достигается в среднем на следующих расстояниях: открытое пространство - 500 м, комната, разделенная перегородками из неметаллического материала - 100 м, офис из нескольких комнат - 30 м. Следует иметь в виду, что через стены с большим содержанием металлической арматуры (в железобетонных зданиях таковыми являются несущие стены) радиоволны диапазона 2,4 ГГц иногда могут вообще не проходить, поэтому в комнатах, разделенных подобной стеной, придется ставить свои точки доступа.

Для соединения удаленных локальных сетей (или удаленных сегментов локальной сети) используется оборудование с направленными антеннами, что позволяет увеличить дальность связи до 20 км (а при использовании специальных усилителей и большой высоте размещения антенн - до 50 км). Причем в качестве подобного оборудования могут выступать и устройства Wi-Fi, нужно лишь добавить к ним специальные антенны (конечно, если это допускается конструкцией). В стандарте WiMAX точки доступа связываются между собой на другой частоте (10 – 66 ГГц, тогда как связь с клиентскими устройствами 1,5 – 11 ГГц).

Сравнительная таблица стандартов беспроводной связи

Технология Стандарт Скорость Дальность Частоты
Wi-Fi 802.11a 54 Мбит/с до 100 метров 5,0 ГГц
Wi-Fi 802.11b 11 Мбит/с до 100 метров 2,4 ГГц
Wi-Fi 802.11g 108 Мбит/с до 100 метров 2,4 ГГц
Wi-Fi 802.11n 300 Мбит/с до 100 метров 2,5 или 5,0 ГГц
WiMax 802.16d 75 Мбит/с 6-10 км 1,5-11 ГГц
WiMax 802.16e 30 Мбит/с 1-5 км 2-6 ГГц
WiMax 802.16m 100 Мбит/с, до 1 Гбит/с
Bluetooth v. 1.1. 802.15.1 1 Мбит/с до 10 метров 2,4 ГГц
Bluetooth v. 1.3. 802.15.3 от 11 до 55 Мбит/с до 100 метров 2,4 ГГц
UWB 802.15.3a 110-480 Мбит/с до 10 метров 7,5 ГГц
ZigBee 802.15.4 20 до 250 Кбит/с 1-100 м 2,4 ГГц (16 каналов), 915 МГц (10 каналов), 868 МГц (один канал)
Инфракрасный порт IrDa 16 Мбит/с 0.5 м, односторонняя связь - до 10 метров


Wi-Fi (Wireless Fidelity - «беспроводная точность»)

Wi-Fi был создан в 1991 году NCR Corporation/AT&T (впоследствии - Lucent Technologies и Agere Systems), Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с.

Установка Wireless LAN рекомендовалась там, где развёртывание кабельной системы было невозможно или экономически нецелесообразно, но технология оказалась настолько удобной, что стала широко применяться и существенно вытеснять проводные соединения. Скорость и надёжность работы повышалась, на данный момент последний из семейства стандартов Wi-Fi IEEE 802.11n был утверждён 11 сентября 2009 года. Теоретически сети стандарта 802.11n способны обеспечить скорость передачи данных до 480 Мбит/с.

Особенно широко Wi-Fi применяется в мобильных устройствах, (КПК, смартфоны, ноутбуки), т.к. применение этой технологии позволяет свободно подключаться к сети в любом месте зоны покрытия.

Принцип работы

Сеть строится по принципу точка доступа – клиенты. Стандарт предусматривает возможность и прямого соединения, но не все устройства поддерживают такой режим.

Точка доступа передаёт свой идентификатор сети (SSID) с помощью специальных сигнальных пакетов каждые 100 мс. Зная SSID сети, клиент может послать запрос на соединение.

В Wi-Fi сетях все пользовательские станции, которые хотят передать информацию через точку доступа (АР), соревнуются за «внимание» последней. Такой подход может вызвать ситуацию при которой связь для более удалённых станций будет постоянно обрываться в пользу более близких станций. Подобное положение вещей делает затруднительным использование таких сервисов как VoIP, которые очень сильно зависят от непрерывного соединения.

Возможно шифрование передаваемых пакетов WEP, WPA и WPA2. Не все устройства поддерживают новые алгоритмы, что снижает безопасность. Для конфиденциальной информации желательно дополнительное шифрование на сетевом уровне (VPN).

Преимущества Wi-Fi

Быстро и без существенных затрат позволяет развернуть сеть и так же быстро убрать, без проведения строительно-монтажных и прочих работ, в том числе вне помещений.

Позволяет иметь доступ к сети мобильным устройствам.

Wi-Fi-устройства широко распространены на рынке.

В отличие от сотовых телефонов, Wi-Fi оборудование может работать в разных странах по всему миру.

Недостатки Wi-Fi

Высокое по сравнению с другими стандартами потребление энергии, что уменьшает время жизни батарей и повышает температуру устройства.

Опасность перехвата пакетов и несанкционированного доступа. Шифрование WEP относительно легко взламывается, а более стойкие WPA и WPA2 поддерживаются не всеми устройствами.

Небольшая дальность. Типичный маршрутизатор Wi-Fi стандарта 802.11b или 802.11g имеет радиус действия 45 м в помещении и 450 м снаружи.

Зависимость от помех, атмосферных явлений, работы высокочастотного оборудования.

Перегрузка оборудования при передаче небольших пакетов данных из-за присоединения большого количества служебной информации.

Лицензионные и частотные ограничения в некоторых странах.

Коммерческий доступ к сервисам на основе Wi-Fi предоставляется в таких местах, как интернет-кафе, аэропорты и кафе по всему миру (обычно эти места называют Wi-Fi-кафе), однако их покрытие можно считать точечным по сравнению с сотовыми сетями. Проекты по покрытию городов сплошной зоной действия Wi-Fi скорее всего так и не будут завершены, вытесняемые более подходящей для этого технологией WiMax.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях, промзонах, складской логистике и т.п. применений.

Пока коммерческие сервисы пытаются использовать существующие бизнес-модели для Wi-Fi, многие группы, сообщества, города, и частные лица строят свободные сети Wi-Fi, часто используя общее пиринговое соглашение для того, чтобы сети могли свободно взаимодействовать друг с другом.

Точки доступа Wi-Fi не требуют высокой квалификации в настройке и обслуживании, что делает их очень удобными прежде всего для SOHO-сегмента. Из широко представленных на рынке это самая простая и удобная в использовании технология локальных беспроводных сетей. При помощи направленных антенн можно использовать дешёвое Wi-Fi оборудование для соединения локальных сетей в сельской местности. Также возможно объединение в сеть общего доступа точек, принадлежащих различным людям и организациям, создание кампусных и домовых сетей.

Некоторые группы строят свои Wi-Fi-сети, полностью основанные на добровольной помощи и пожертвованиях.

Некоторые небольшие страны и муниципалитеты уже обеспечивают свободный доступ к хот-спотам Wi-Fi и доступ к Интернету через Wi-Fi по месту жительства для всех. Например, Королевство Тонга или Эстония, которые имеют большое количество свободных хот-спотов Wi-Fi по всей территории страны. В Париже OzoneParis предоставляет свободный доступ в Интернет неограниченно всем, кто способствует развитию Pervasive Network, предоставляя крышу своего дома для монтажа оборудования Wi-Fi. Unwire Jerusalem - это проект установки свободных точек доступа Wi-Fi в крупных торговых центрах Иерусалима. Многие университеты обеспечивают свободный доступ к Интернет через Wi-Fi для своих студентов.

Некоторые коммерческие организации предоставляют свободный доступ к Wi-Fi в целях привлечения клиентов. В СНГ бесплатный Wi-Fi доступ в Интернет предоставляет Макдональдс и система кинотеатров Каро-фильм. Некоторые организации предоставляют доступ только своим клиентам (например, печатая текущий ключ шифрования на кассовом чеке).

WiFi (читается "вайфай" с ударением на втором слоге) - это промышленное название технологии беспроводного обмена данными, относящееся к группе стандартов организации беспроводных сетей IEEE 802.11. В некоторой степени, термин Wi-Fi является синонимом 802.11b, поскольку стандарт 802.11b был первым в группе стандартов IEEE 802.11 получившим широкое распространение. Однако сегодня термин Wi-Fi в равной степени относится к любому из стандартов 802.11b, 802.11a, 802.11g и 802.11n, 802.11ac.

Wi-Fi Alliance занимается аттестацией Wi-Fi продукции, что позволяет гарантировать, что вся 802.11 продукция, поступающая на рынок, соответствует спецификации стандарта. К сожалению, стандарт 802.11a, использующий частоту 5ГГц, не совместим со стандартами 802.11b/g, использующим частоту 2,4ГГц, поэтому рынок Wi-Fi продукции остается фрагментированным. Для нашей страны это неактуально, поскольку для использования аппаратуры стандарта 802.11а, требуется специальное разрешение и она не получила здесь широкого распространения, к тому же подавляющее большинство устройств, поддерживающих стандарт 802.11a, поддерживают также и стандарт 802.11b или 802.11g, что позволяет считать относительно совместимыми все продаваемые в данный момент WiFi устройства. Новый стандарт 802.11n поддерживает обе эти частоты.

Какое оборудование необходимо для создания беспроводной сети?

Для каждого устройства, участвующего в беспроводной сети, необходим беспроводной сетевой адаптер, также называемый беспроводной сетевой картой. Все современные ноутбуки, некоторые настольные компьютеры, смартфоны и планшеты уже оснащены встроенными беспроводными сетевыми адаптерами. Однако во многих случаях для создания беспроводной сети из настольных компьютеров сетевые адаптеры необходимо приобретать отдельно. Популярные сетевые адаптеры для ноутбуков выполнены в формате Mini PCI-E или M.2 устройств, соответственно, для настольных компьютеров существуют модели с интерфейсом PCI, PCI-E, беспроводные USB-адаптеры можно подключать как в портативные, так и в настольные системы.

Для создания небольшой беспроводной локальной сети из двух (в некоторых случаях - и большего числа) устройств достаточно иметь необходимое число сетевых адаптеров. (Требуется, чтобы они поддерживали режим AdHoc). Однако, если вы захотите увеличить производительность вашей сети, включить в сеть больше компьютеров и расширить радиус действия сети, вам понадобятся беспроводные точки доступа и/или беспроводные маршрутизаторы. Функции беспроводных маршрутизаторов аналогичны функциям традиционных проводных маршрутизаторов. Обычно они используются в тех случаях, когда беспроводная сеть создается с нуля. Альтернативой маршрутизаторам являются точки доступа, позволяющие подключить беспроводную сеть к уже существующей проводной сети. Точки доступа используются, как правило, для расширения сети, в которой уже есть проводной коммутатор (switch) или маршрутизатор. Для построения домашней локальной сети достаточно одной точки доступа, которой вполне по силам обеспечить необходимый радиус действия. Офисные сети обычно требуют несколько точек доступа и/или маршрутизаторов.

Точки доступа и маршрутизаторы, сетевые карты с интерфейсом PCI/PCI-E и некоторые USB адаптеры могут использоваться с более мощными антеннами вместо штатных, что значительно увеличивает дальность связи или радиус охвата.

Адаптеры Точки доступа Прочее
Сеть из двух беспроводных устройств без подключения к локальной проводной сети 2 - Сетевые адаптеры должны поддерживать режим Ad-Hoc, в некоторых случаях можно так объединять в сеть более двух устройств.
Небольшая домашняя или офисная сеть из По числу устройств 1 Если в локальную сеть планируется подключать и проводные устройства, то необходима точка доступа с функциональностью маршрутизатора (Wireless Router).
Мост между проводными локальными сетями - По числу сетей, если их больше двух, необходимо удостовериться, что выбранные точки доступа поддерживают режим Point-To-MultiPoint Bridge -
Организация крупной беспроводной офисной или корпоративной сети По числу устройств Количество выбирается исходя из оптимальной зоны покрытия и скорости работы. Часть точек доступа может работать в режиме репитеров или WDS.

Каков стандартный радиус действия Wi-Fi сети?

Радиус действия домашней Wi-Fi сети зависит от типа используемой беспроводной точки доступа или беспроводного маршрутизатора. К факторам, определяющим диапазон действия беспроводных точек доступа или беспроводных маршрутизаторов, относятся:

Тип используемого протокола 802.11;
. Общая мощность передатчика;
. Коэффициент усиления используемых антенн;
. Длина и затухание в кабелях, которыми подключены антенны;
. Природа препятствий и помех на пути сигнала в данной местности.

Радиус действия со штатными антеннами (обычно усиление 2dBi) популярных точек доступа и маршрутизаторов стандарта 802.11g, при условии, что они соединяются с устройством, имеющим антенну с аналогичным усилением, можно примерно оценить в 150м на открытой местности и 50 м в помещении, более точные цифры для разных стандартов приведены ниже в таблице, посвященной скорости передачи.

Препятствия в виде кирпичных стен и металлических конструкций могут уменьшить радиус действия Wi-Fi сети на 25% и более. Поскольку стандарты 802.11a/ac используют частоты выше, чем стандарты 802.11b/g, он является наиболее чувствительным к различного рода препятствиям. На радиус действия Wi-Fi сетей, поддерживающих стандарт 802.11b или 802.11g, влияют также помехи, исходящие от микроволновых печей. Ниже показана таблица с приблизительными потерями эффективности сигнала Wi-Fi с частотой 2.4 ГГц при прохождении через различные препятствия.

Ещё одним существенным препятствием может оказаться листва деревьев, поскольку она содержит воду, поглощающую микроволновое излучение данного диапазона. Проливной дождь ослабляет сигналы в диапазоне 2.4GHz с интенсивностью до 0.05 dB/км, густой туман вносит ослабление 0.02 dB/км, а в лесу (густая листа, ветви) сигнал может затухать с интенсивностью до 0.5дб/метр.

Увеличить радиус действия Wi-Fi сети можно посредством объединения в цепь нескольких беспроводных точек доступа или маршрутизаторов, а также путём замены штатных антенн, установленных на сетевых картах и точках доступа, на более мощные.

Приблизительно возможные варианты дальности действия и скорости работы сети в идеальном случае можно рассчитать с помощью специального калькулятора, ориентированного на оборудование D-Link, но использованные там формулы и методики подходят и для любого другого.

При создании радиомоста между двумя сетями надо знать тот факт, что пространство вокруг прямой линии, проведённой между приёмником и передатчиком должно быть свободно от отражающих и поглощающих препятствий в радиусе, сравнимом с 0.6 радиуса первой зоны Френеля. Её размер можно рассчитать исходя из следующей формулы:

В реальной ситуации уровень сигнала на различном удалении от передающего устройства можно замерить при помощи специального устройства .

Что такое организация сети в режиме Infrastructure?

Данный режим позволяет подключить беспроводную сеть к проводной сети Ethernet посредством беспроводной точки доступа. Для того, чтобы подключение стало возможным необходимо, чтобы беспроводная локальная сеть (WLAN), беспроводная точка доступа и все беспроводные клиенты использовали одинаковый SSID (Service Set ID). Тогда Вы сможете подключить точку доступа к проводной сети с помощью кабеля и таким образом обеспечить беспроводным клиентам доступ к данным проводной сети. Для того, чтобы расширить инфраструктуру и обеспечить одновременный доступ к проводной сети любому числу беспроводных клиентов, Вы можете подключить к беспроводной локальной сети дополнительные точки доступа.

Основными преимуществами сетей, организованных в режиме Infrastructure по сравнению с сетями, организованными в режиме Ad-Hoc, является их масштабируемость, централизованная защита и расширенный радиус действия. Недостатком безусловно является необходимость расходов на приобретение дополнительного оборудования, например дополнительной точки доступа.

Беспроводные маршрутизаторы, предназначенные для использования в домашних условиях, всегда оснащены встроенной точкой доступа для поддержки режима Infrastructure.

Насколько быстрой может быть беспроводная сеть?

Скорость беспроводной сети зависит от нескольких факторов. Производительность беспроводных локальных сетей определяется тем, какой стандарт Wi-Fi они поддерживают. Максимальную пропускную способность могут предложить сети, поддерживающие стандарт 802.11ac - до 2167 Мбит/сек (при использовании MU-MIMO). Пропускная способность сетей, поддерживающих стандарт 802.11a или 802.11g, может составить до 54 Мбит/сек. (Сравните со стандартными проводными сетями Ethernet, пропускная способность которых составляет 100 или 1000 Мбит/сек.)

На практике, даже при максимально возможном уровне сигнала производительность Wi-Fi сетей никогда не достигает указанного выше теоретического максимума. Например, скорость сетей, поддерживающих стандарт 802.11b, обычно составляет не более 50% их теоретического максимума, т. е. приблизительно 5.5 Мбит/сек. Соответственно, скорость сетей, поддерживающих стандарт 802.11a или 802.11g, обычно составляет не более 20 Мбит/сек. Причинами несоответствия теории и практики являются избыточность кодирования протокола, помехи в сигнале, а также изменение расстояния Хемминга с изменением расстояния между приемником и передатчиком. Кроме того, чем больше устройств в сети одновременно участвуют в обмене данными, тем пропорционально ниже пропускная способность сети в расчёте на каждое устройство, что естественным образом ограничивает количество устройств, которое имеет смысл подключать к одной точке доступа или роутеру (другое ограничение может быть вызвано особенностями работы встроенного DHCP-сервера, у устройств из нашего ассортимента итоговая цифра находилась в диапазоне от 26 до 255 устройств).

Протокол Используемая частота Максимальная теоретическая скорость Типичная скорость на практике Дальность связи в помещении Дальность связи на открытой местности
802.11b 2.4ГГц 11Мбит/cек 0.4Мбайт/cек 38 140
802.11a 5ГГц 54Мбит/cек 2.3Мбайт/cек 35 120
802.11g 2.4ГГц 54Мбит/cек 1.9Мбайт/сек 38 140
802.11n 2.4ГГц, 5ГГц 600Мбит/cек 7.4Мбайт/cек 70 250

Кроме того, скорость работы любой пары устройств существенно падает с уменьшением уровня сигнала, поэтому зачастую наиболее эффективным средством поднятия скорости для удалённых устройств является применение антенн с большим коэффициентом усиления.

Безопасна ли для здоровья беспроводная связь?

В последнее время в средствах массовой информации много говорят о том, что продолжительное использование беспроводных сетевых устройств может спровоцировать серьезные заболевания. Однако, на сегодняшний день научные данные, которые подтверждали бы предположения о том, что СВЧ-сигналы оказывают негативное влияние на здоровье человека, отсутствуют.

Несмотря на недостаток научных данных, осмелимся предположить, что беспроводные сети более безопасны для здоровья человека, чем мобильные телефоны. Частотный диапазон сигналов типичной домашней беспроводной сети совпадает с частотным диапазоном сигналов микроволновых печей, но мощность сигналов микроволновых печей и даже мобильных телефонов в 100 - 1000 раз превышает мощность сигналов беспроводных сетевых адаптеров и точек доступа.

В целом, в данном вопросе можно с уверенностью утверждать одно: интенсивность воздействия на человека СВЧ-излучения беспроводных сетей несравнимо меньше воздействия других СВЧ-устройств.

Порядок регистрации РЭС описан в постановлениях Правительства Российской Федерации от 12 октября 2004 г. № 539 "О порядке регистрации радиоэлектронных средств и высокочастотных устройств" и от 25 июля 2007 г. № 476 О внесении изменений в постановление Правительства Российской Федерации от 12 октября 2004 г. № 539 "О порядке регистрации радиоэлектронных средств и высокочастотных устройств"

Согласно постановлению N 476 от 25 июля 2007 г. пользовательское (оконечное) оборудование радиодоступа(беспроводного доступа) в полосе радиочастот 2400 - 2483,5 МГц с мощностью излучения передающих устройств до 100 мВт включительно ИСКЛЮЧЕНО из перечня радиоэлектронных средств и высокочастотных устройств, подлежащих регистрации. Напоминаем, что штатная мощность передатчика всех продаваемых в настоящее время пользовательских WiFi устройств находится в пределах этой цифры, а установка любых антенн, не имеющих активных элементов, её не увеличивает.

Режимы работы точки доступа

Access Point Mode (Точка доступа) - Режим Access Point предназначен для беспроводного подключения к точке доступа портативных компьютеров, настольных ПК, смартфонов и планшетов. Беспроводные клиенты могут обращаться к точке доступа только в режиме Access Point.

Access Point Client / Wireless Client Mode (Беспроводной клиент) - Режим AP Client или Wireless Client позволяет точке доступа стать беспроводным клиентом другой точки доступа. По существу, в данном режиме точка доступа выполняет функции беспроводного сетевого адаптера. Вы можете использовать данный режим для обмена данными между двумя точками доступа. Обмен данными между беспроводной платой и точкой доступа в режиме Access Point Client / Wireless Client Mode невозможен.

Point-to-Point / Wireless Bridge (Беспроводной мост point-to-point) - Режим Point-to-Point / Wireless Bridge позволяет беспроводной точке обмениваться данными с другой точкой доступа, поддерживающей режим беспроводного моста point-to-point. Однако имейте в виду, что большинство производителей используют свои собственные оригинальные настройки для активации режима беспроводного моста в точке доступа. Обычно данный режим используется для беспроводного соединения аппаратуры в двух разных зданиях. Беспроводные клиенты не могут обмениваться данными с точкой доступа в этом режиме.

Point-to-Multipoint / Multi-point Bridge (Беспроводной мост point-to-multipoint) - Режим Point-to-Multi-point / Multi-point Bridge аналогичен режиму Point-to-point / Wireless Bridge с той лишь разницей, что допускает использование более двух точек доступа. Беспроводные клиенты также не могут обмениваться данными с точкой доступа в этом режиме.

Repeater Mode (Репитер) - Функционируя в режиме беспроводного репитера, точка доступа расширяет диапазон действия беспроводной сети посредством повтора сигнала удаленной точки доступа. Для того чтобы точка доступа могла выполнять функции беспроводного расширителя радиуса действия другой точки доступа, в её конфигурации необходимо указать Ethernet MAC-адрес удаленной точки доступа. В данном режиме беспроводные клиенты могут обмениваться данными с точкой доступа.

WDS (Wireless Distribution System) - позволяет одновременно подключать беспроводных клиентов к точкам, работающим в режимах Bridge (мост точка-точка) или Multipoint Bridge (мост точка-много точек), однако при этом уменьшается скорость работы.

Все точки доступа и беспроводные маршрутизаторы, продаваемые в настоящее время, легко конфигурируются через web-интерфейс, для чего необходимо при первом подключении их к Вашей сети обратиться через web-браузер по определённому IP-адресу, указанному в документации к устройству. (В некоторых случаях потребуются специальные настройки протокола TCP/IP на компьютере, используемом для конфигурирования точки доступа или маршрутизатора, также указанные в документации)

Оборудовнаие многих производителей также комплектуется специальным ПО, в том числе для мобильных устройств, позволяющим облегчить процедуру настройки для пользователей. Специфичные сведения, необходимые для настройки роутера для работы с вашим провайдером практически всегда можно узнать на сайте самого провайдера.

Безопасность, шифрование и авторизация пользователей в беспроводных сетях.

Изначально для обеспечения безопасности в сетях 802.11 применялся алгоритм WEP (Wired Equivalent Privacy), включавший в себя алгоритм шифрования RC4 c 40-битным или 104-битным ключом и средства распределения ключей между пользователями, однако в 2001 году в нём была найдена принципиальная уязвимость, позволяющая получить полный доступ к сети за конечное (и весьма небольшое время) вне зависимости от длины ключа. Категорически не рекомендуется к использованию в настоящее время. Поэтому в 2003 году была принята программа сертификации средств беспроводной связи под названием WPA (Wi-Fi Protected Access), устранявшая недостатки предыдущего алгоритма. С 2006 года все WiFi-устройства обязаны поддерживать новый стандарт WPA2 , который отличается от WPA поддержкой более современного алгоритма шифрования AES с 256-битным ключом. Также в WPA появился механизм защиты передаваемых пакетов с данными от перехвата и фальсификации. Именно такое сочетание (WPA2/AES) рекомендуется сейчас к использованию во всех закрытых сетях.

У WPA есть два режима авторизации пользователей в беспроводной сети - при помощи RADIUS-сервера авторизации (ориентирован на корпоративных пользователей и крупные сети, в этом FAQ не рассматривается) и WPA-PSK (Pre Shared Key), который предлагается использовать в домашних сетях, а также в небольших офисах. В этом режиме авторизация по паролю (длиной от 8 до 64 символов) производится на каждом узле сети (точке доступа, роутере или эмулирующем их работе компьютере, сам пароль предварительно задаётся из меню настроек точки доступа или иным специфичным для вашего оборудования способом).

Также во многих современных бытовых Wi-Fi устройствах применяется режим Wi-Fi Protected Setup (WPS ), также именуемый Wi-Fi Easy Setup, где авторизация клиентов на точке доступа осуществляется при помощи специальной кнопки или вводом pin-кода, уникального для устройства.

Для случаев, когда в сети эксплуатируется фиксированный набор оборудования (т.е. например, мост, созданный при помощи двух точек доступа или единственный ноутбук, подключаемый к беспроводному сегменту домашней сети) наиболее надёжным способом является ограничение доступа по MAC-адресу (уникальный адрес для каждого Ethernet устройства, как проводного, так и беспроводного, в Windows для всех сетевых устройств эти адреса можно прочесть в графе Physical Address после подачи команды ipconfig /all) посредством прописывания в меню точки доступа списка MAC-адресов «своих» устройств и выбор разрешения доступа в сеть только устройствам с адресами из этого списка.

Также у любой беспроводной сети есть уникальный идентификатор – SSID (service set identifier), который собственно и отображается как имя сети при просмотре списка доступных сетей, который задаётся при настройке используемой точки доступа (или заменяющего его устройства). При отключении рассылки (broadcast) SSID сеть будет выглядеть для просматривающих доступные сети пользователей как безымянная, а для подключения необходимо знать и SSID, и пароль (в случае использования WPA-PSK, однако само по себе отключение SSID не делает сеть более устойчивой к несанкционированному проникновению извне.

Развитие технологии WiFi

Главный недостаток сетей WiFi – их низкая емкость, то есть при увеличении количества клиентов скорость соединения, несмотря на то, что уровень сигнала отличный, может сильно снизиться. Для изменения этой ситуации в данный момент разрабатывается новый стандарт 802.11.ax. Его принятие запланировано на декабрь 2018 года. Из-за этого точных данных обо всех особенностях нового стандарта пока нет, и в зависимости от источника информация может заметно различаться, так например пропускную способность обещают от 1.8 до 10 Гбит/с. Из того, что известно точно можно назвать следующее:

Частота работы 2.4 и 5 ГГц
. Поддержка модуляции OFDMA, пришедшей из LTE/WiMax. Благодаря ей обеспечивается возможность точке передавать данные сразу на 30 клиентов (20 МГц канал) или запросить передачу данных от тех же 30 клиентов одновременно
. Поддержка модуляции 1024-QAM, благодаря чему увеличится скорость передачи данных

В целом новый стандарт 802.11ax будет обеспечивать обратную совместимость с предыдущими версиями, но получить все преимущества можно будет только в случае перевода всех устройств на новый стандарт. Старые адаптеры будут очень сильно снижать производительность.

1. Что такое Wi-Fi
2. Стандарты беспроводных сетей
3. Безопасность беспроводных сетей
4. Дополнительные методы защиты

Что такое Wi-Fi

Wi-Fi - стандарт на оборудование для широкополосной радиосвязи, предназначенной для организации локальных беспроводных сетей Wireless LAN. Установка таких сетей рекомендуется там, где развёртывание кабельной системы невозможно или экономически нецелесообразно, а также очень удобно и избавляет от лишних проводов. Благодаря функции хендовера пользователи могут перемещаться между точками доступа по территории покрытия сети Wi-Fi без разрыва соединения. Разработан консорциумом Wi-Fi Alliance на базе стандартов IEEE 802.11.

Схема Wi-Fi сети содержит точку доступа и клиента или множество клиентов. Точка доступа передаёт свой SSID (англ. Service Set IDentifier, Network name - идентификатор сети, сетевое имя) с помощью специальных пакетов, называемых сигнальными пакетами, передающихся каждые 100 мс. Сигнальные пакеты передаются на скорости 1 Mбит/с и обладают малым размером, поэтому они не влияют на характеристики сети. Зная параметры сети (то есть SSID), клиент может выяснить, возможно ли подключение к данной точке доступа. Программа, встроенная в Wi-Fi карту клиента, также может влиять на подключение. При попадании в зону действия двух точек доступа с идентичными SSID программа может выбирать между ними на основании данных об уровне сигнала.

Стандарты беспроводных сетей

На данный момент существуют несколько стандартов Wi-Fi – это 802.11a, 802.11b, 802.11g, 802.11n, 802.11i, 802.11ac. Из них в России используются четыре: 802.11b и 802.11g, 802.11a, 802.11n. Все они с друг другом совместимы, отличие в скорости передачи данных.

Стандарт IEEE 802.11n был утверждён 11 сентября 2009 года. Его применение позволяет повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. С 2011 по 2013 разрабатывался стандарт IEEE 802.11ac. Скорость передачи данных при использовании 802.11ac может достигать нескольких Гбит/с. 27 июля 2011 года Институт инженеров электротехники и электроники (IEEE) выпустил официальную версию стандарта IEEE 802.22. Системы и устройства, поддерживающие этот стандарт, позволят передавать данные на скорости до 22 Мбит/с в радиусе 100 км от ближайшего передатчика.

Новейшая технология разработаная на сегодня, однако трудно реализуема в повседневной жизни, так называемая Li-Fi. Информация в Li-Fi передается незаметными для человеческого глаза вспышками света, которые, в свою очередь, генерируются самыми обычными светодиодными лампами, используемыми нами для освещения. В итоге достигнута передача данных на скорости в 10 гигабит в секунду. Данные передаются светом, что на данный момент делает их перехват невозможным. Кроме того, Li-Fi может быть использован в местах, где связь может быть заглушена излучением от какого-либо оборудования (в больницах и т. д.). Основной недостаток Li-Fi - в самой сути технологии. Передача при помощи светового сигнала подразумевает нахождение передатчика и приемника в прямой видимости друг друга (через непрозрачную поверхность такой сигнал уже не передать).

802.11b - Скорость: 11 Mbps; Радиус действия: 50 м; Протоколы обеспечения безопасности: WEP; Уровень безопасности: низкий.

Это первый беспроводной стандарт появившийся в России и применяемый повсеместно до сих пор. Скорость передачи довольно невысокая, а безопасность находиться на довольно низком уровне. При желании злоумышленнику может потребоваться меньше часа для расшифровки ключа сети и проникновения в вашу локальную сеть. Для защиты используется протокол WEP, который охарактеризовал себя не с лучшей стороны и был взломан несколько лет назад. Мы рекомендуем не применять данных стандарт не дома ни тем более в корпоративных вычислительных сетях. Исключение может составлять те случаи, когда оборудование не поддерживает другой, более защищенный стандарт.

802.11g - Скорость: 54 Mbps, до 125 Mbps; Радиус действия: 50 м; Протоколы обеспечения безопасности: WEP, WPA, WPA2; Уровень безопасности: высокий.

Это более продвинутый стандарт, пришедший на смену 802.11b. Была увеличена скорость передачи данных почти в 5 раз, и теперь она составляет 54 Mbps. При использовании оборудования поддерживающего технологии superG* или True MIMO* предел максимально достижимой скорости составляет 125 Mpbs. Возрос и уровень защиты: при соблюдении всех необходимых условий при правильной настройке, его можно оценить как высокий. Данный стандарт совместим с новыми протоколами шифрования WPA и WPA2*. Они предоставляют более высокий уровень защиты, нежели WEP. О случаях взлома протокола WPA2* пока не известно.

802.11i - Скорость: 125 Mbps; Радиус действия: 50 м; Протоколы обеспечения безопасности: WEP, WPA, WPA2; Уровень безопасности: Высокий

Это новый стандарт, внедрение которого только начинается. В данном случае непосредственно в сам стандарт встроена поддержка самых современных технологий, таких как True MIMO и WPA2. Поэтому необходимость более тщательного выбора оборудования отпадает. Планируется, что это стандарт придет на смену 802.11g и сведет на нет все попытки взлома.

802.11n - Скорость: до 540 Mbps; Протоколы обеспечения безопасности: WEP, WPA, WPA2; Уровень безопасности: Высокий.

Будущий стандарт, разработки которого ведутся в данный момент. Этот стандарт должен обеспечить большие расстояния охвата беспроводных сетей и более высокую скорость, вплоть до 540 Мбит/сек.

Однако, следует помнить, что неправильная настройка оборудования, поддерживающего даже самые современные технологии защиты, не обеспечит должный уровень безопасности вашей сети. В каждом стандарте есть дополнительные технологии и настройки для повышения уровня безопасности. Поэтому мы рекомендуем доверять настройку Wi-Fi оборудования только профессионалам.

Безопасность беспроводных сетей

Безопасности беспроводных сетей стоит уделять особое внимание. Ведь wi-fi это беспроводная сеть и притом с большим радиусом действия. Соответственно, злоумышленник может перехватывать информацию или же атаковать Вашу сеть, находясь на безопасном расстоянии. К счастью в настоящее время существуют множество различных способов защиты и при условии правильной настройки можно быть уверенным в обеспечении необходимого уровня безопасности.

WEP - Протокол шифрования, использующий довольно не стойкий алгоритм RC4 на статическом ключе. Существует 64-, 128-, 256- и 512-битное wep шифрование. Чем больше бит используется для хранения ключа, тем больше возможных комбинаций ключей, а соответственно более высокая стойкость сети к взлому. Часть wep ключа является статической (40 бит в случае 64-битного шифрования), а другая часть (24 бит) – динамичекая (вектор инициализации), то есть меняющаяся в процессе работы сети. Основной уязвимостью протокола wep является то, что вектора инициализации повторяются через некоторый промежуток времени и взломщику потребуется лишь собрать эти повторы и вычислить по ним статическую часть ключа. Для повышения уровня безопасности можно дополнительно к wep шифрованию использовать стандарт 802.1x или VPN.

WPA - Более стойкий протокол шифрования, чем wep, хотя используется тот же алгоритм RC4. Более высокий уровень безопасности достигается за счет использования протоколов TKIP и MIC.

  • TKIP (Temporal Key Integrity Protocol). Протокол динамических ключей сети, которые меняются довольно часто. При этом каждому устройству также присваивается ключ, который тоже меняется.
  • MIC (Message Integrity Check). Протокол проверки целостности пакетов. Защищает от перехвата пакетов и из перенаправления. Также возможно и использование 802.1x и VPN, как и в случае с wep.
  • Существует два вида WPA:

  • WPA-PSK (Pre-shared key). Для генерации ключей сети и для входа в сеть используется ключевая фраза. Оптимальный вариант для домашней или небольшой офисной сети.
  • WPA-802.1x. Вход в сеть осуществляется через сервер аутентификации. Оптимально для сети крупной компании.
  • WPA2 - Усовершенствование протокола WPA. В отличие от WPA, используется более стойкий алгоритм шифрования AES. По аналогии с WPA, WPA2 также делится на два типа: WPA2-PSK и WPA2-802.1x.

    802.1X - cтандарт безопасности, в который входят несколько протоколов:

  • EAP (Extensible Authentication Protocol). Протокол расширенной аутентификации. Используется совместно с RADIUS сервером в крупных сетях.
  • TLS (Transport Layer Security). Протокол, который обеспечивает целостность и шифрование передаваемых данных между сервером и клиентом, их взаимную аутентификацию, предотвращая перехват и подмену сообщений.
  • RADIUS (Remote Authentication Dial-In User Server). Сервер аутентификации пользователей по логину и паролю.
  • VPN (Virtual Private Network) – Виртуальная частная сеть. Этот протокол изначально был создан для безопасного подключения клиентов к сети через общедоступные Интернет-каналы. Принцип работы VPN – создание так называемы безопасных «туннелей» от пользователя до узла доступа или сервера. Хотя VPN изначально был создан не для WI-Fi, его можно использовать в любом типе сетей. Для шифрования трафика в VPN чаще всего используется протокол IPSec. Он обеспечивает практически стопроцентную безопасность. Случаев взлома VPN на данный момент неизвестно. Мы рекомендуем использовать эту технологию для корпоративных сетей.

    Дополнительные методы защиты

    Фильтрация по MAC адресу.

    MAC адрес – это уникальный идентификатор устройства (сетевого адаптера), «зашитый» в него производителем. На некотором оборудовании возможно задействовать данную функцию и разрешить доступ в сеть необходимым адресам. Это создаст дополнительную преграду взломщику, хотя не очень серьезную – MAC адрес можно подменить.

    Слабый сигнал WiFi - актуальная проблема для жителей квартир, загородных домов и работников офисов. Мертвые зоны в сети WiFi свойственны как большим помещениям, так и малогабаритным квартирам, площадь которых теоретически способна покрыть даже бюджетная точка доступа.

    Радиус действия WiFi роутера - характеристика, которую производители не могут однозначно указать на коробке: на дальность WiFi влияет множество факторов, которые зависят не только от технических спецификаций устройства.

    В этом материале представлены 10 практических советов, которые помогут устранить физические причины плохого покрытия и оптимизировать радиус действия WiFi роутера, это легко сделать своими руками.

    Излучение точки доступа в пространстве представляет собой не сферу, а тороидальное поле, напоминающее по форме бублик. Чтобы покрытие WiFi в пределах одного этажа было оптимальным, радиоволны должны распространяться в горизонтальной плоскости - параллельно полу. Для этого предусмотрена возможность наклона антенн.

    Антенна - ось «бублика». От ее наклона зависит угол распространения сигнала.

    При наклонном положении антенны относительно горизонта, часть излучения направляется вне помещения: под плоскостью «бублика» образуются мертвые зоны.

    Вертикально установленная антенна излучает в горизонтальной плоскости: внутри помещения достигается максимальное покрытие.

    На практике : Установить антенну вертикально — простейший способ оптимизировать зону покрытия WiFi внутри помещения.

    Разместить роутер ближе к центру помещения

    Очередная причина возникновения мертвых зон - неудачное расположение точки доступа. Антенна излучает радиоволны во всех направлениях. При этом интенсивность излучения максимальна вблизи маршрутизатора и уменьшается с приближением к краю зоны покрытия. Если установить точку доступа в центре дома, то сигнал распределится по комнатам эффективнее.

    Роутер, установленный в углу, отдает часть мощности за пределы дома, а дальние комнаты оказываются на краю зоны покрытия.

    Установка в центре дома позволяет добиться равномерного распределения сигнала во всех комнатах и минимизировать мертвые зоны.

    На практике : Установка точки доступа в “центре” дома далеко не всегда осуществима из-за сложной планировки, отсутствия розеток в нужном месте или необходимости прокладывать кабель.

    Обеспечить прямую видимость между роутером и клиентами

    Частота сигнала WiFi — 2,4 ГГц. Это дециметровые радиоволны, которые плохо огибают препятствия и имеют низкую проникающую способность. Поэтому радиус действия и стабильность сигнала напрямую зависят от количества и структуры препятствий между точкой доступа и клиентами.

    Проходя через стену или перекрытие, электромагнитная волна теряет часть энергии.

    Величина ослабления сигнала зависит от материала, который преодолевают радиоволны.

    *Эффективное расстояние - это величина, определяющая как изменяется радиус беспроводной сети в сравнении с открытым пространством при прохождении волной препятствия.

    Пример расчета : Сигнал WiFi 802.11n распространяется в условиях прямой видимости на 400 метров. После преодоления некапитальной стены между комнатами сила сигнала снижается до величины 400 м * 15% = 60 м. Вторая такая же стена сделает сигнал еще слабее: 60 м * 15% = 9 м. Третья стена делает прием сигнала практически невозможным: 9 м * 15% = 1,35 м.

    Такие расчеты помогут вычислить мертвые зоны, которые возникают из-за поглощения радиоволн стенами.

    Следующая проблема на пути радиоволн: зеркала и металлические конструкции. В отличие от стен они не ослабляют, а отражают сигнал, рассеивая его в произвольных направлениях.

    Зеркала и металлические конструкции отражают и рассеивают сигнал, образуя за собой мертвые зоны.

    Если переместить элементы интерьера, отражающие сигнал, удастся устранить мертвые зоны.

    На практике : Крайне редко удается достичь идеальных условий, когда все гаджеты находятся на прямой видимости с роутером. Поэтому в условиях реального жилища над устранением каждой мертвой зоной придется работать отдельно:

    • выяснить что мешает сигналу (поглощение или отражение);
    • продумать куда переместить роутер (или предмет интерьера).

    Разместить роутер подальше от источников помех

    Диапазон 2,4 ГГц не требует лицензирования и поэтому используется для работы бытовых радиостандартов: WiFi и Bluetooth. Несмотря на малую пропускную способность, Bluetooth все же способен создать помехи маршрутизатору.

    Зеленые области - поток от WiFi роутера. Красные точки - данные Bluetooth. Соседство двух радиостандартов в одном диапазоне вызывает помехи, снижающие радиус действия беспроводной сети.

    В этом же частотном диапазоне излучает магнетрон микроволновой печи. Интенсивность излучения этого устройства велика настолько, что даже сквозь защитный экран печи излучение магнетрона способно “засветить” радиолуч WiFi роутера.

    Излучение магнетрона СВЧ-печи вызывает интерференционные помехи почти на всех каналах WiFi.

    На практике :

    • При использовании вблизи роутера Bluetooth-аксессуаров, включаем в настройках последних параметр AFH.
    • Микроволновка - мощный источник помех, но она используется не так часто. Поэтому, если нет возможности переместить роутер, то просто во время приготовления завтрака не получится позвонить по скайпу.

    Отключить поддержку режимов 802.11 B/G

    В диапазоне 2,4 ГГц работают WiFi устройства трёх спецификаций: 802.11 b/g/n. N является новейшим стандартом и обеспечивает большую скорость и дальность по сравнению с B и G.

    Спецификация 802.11n (2,4 ГГц) предусматривает большую дальность, чем устаревшие стандарты B и G.

    Роутеры 802.11n поддерживают предыдущие стандарты WiFi, но механика обратной совместимости такова, что при появлении в зоне действия N-роутера B/G-устройства, - например, старый телефон или маршрутизатор соседа - вся сеть переводится в режим B/G. Физически происходит смена алгоритма модуляции, что приводит к падению скорости и радиуса действия роутера.

    На практике : Перевод маршрутизатора в режим “чистого 802.11n” однозначно скажется положительно на качестве покрытия и пропускной способности беспроводной сети.

    Однако девайсы B/G при этом не смогут подключиться по WiFi. Если это ноутбук или телевизор, их можно легко соединить с роутером через Ethernet.

    Выбрать оптимальный WiFi канал в настройках

    Почти в каждой квартире сегодня есть WiFi роутер, поэтому плотность сетей в городе очень велика. Сигналы соседних точек доступа накладываются друг на друга, отнимая энергию у радиотракта и сильно снижая его эффективность.

    Соседние сети, работающие на одной частоте, создают взаимные интерференционные помехи, подобно кругам на воде.

    Беспроводные сети работают в пределах диапазона на разных каналах. Таких каналов 13 (в России) и роутер переключается между ними автоматически.

    Чтобы минимизировать интерференцию, нужно понять на каких каналах работают соседние сети и переключиться на менее загруженный.
    Подробная инструкция по настройке канала представлена .

    На практике : Выбор наименее загруженного канала - эффективный способ расширить зону покрытия, актуальный для жильцов многоквартирного дома.

    Но в некоторых случаях в эфире присутствует сетей настолько много, что ни один канал не даёт ощутимого прироста скорости и дальности WiFi. Тогда имеет смысл обратиться к способу № 2 и разместить роутер подальше от стен, граничащих с соседними квартирами. Если и это не принесет результата, то стоит задуматься о переходе в диапазон 5 ГГц (способ № 10).

    Отрегулировать мощность передатчика роутера

    Мощность передатчика определяет энергетику радиотракта и напрямую влияет на радиус действия точки доступа: чем более мощный луч, тем дальше он бьет. Но этот принцип бесполезен в случае всенаправленных антенн бытовых роутеров: в беспроводной передаче происходит двусторонний обмен данными и не только клиенты должны “услышать” роутер, но и наоборот.

    Асимметрия: роутер “дотягивается” до мобильного устройства в дальней комнате, но не получает от него ответ из-за малой мощности WiFi-модуля смартфона. Соединение не устанавливается.

    На практике : Рекомендуемое значение мощности передатчика — 75%. Повышать ее следует только в крайних случаях: выкрученная на 100% мощность не только не улучшает качество сигнала в дальних комнатах, но даже ухудшает стабильность приема вблизи роутера, т. к. его мощный радиопоток “забивает” слабый ответный сигнал от смартфона.

    Заменить штатную антенну на более мощную

    Большинство роутеров оснащены штатными антеннами с коэффициентом усиления 2 — 3 dBi. Антенна — пассивный элемент радиосистемы и не способна увеличить мощность потока. Однако повышение коэффициента усиления позволяет перефокусировать радиосигнал за счет изменения диаграммы направленности.

    Чем больше коэффициент усиления антенны, тем дальше распространяется радиосигнал. При этом более узкий поток становится похож не на “бублик”, а на плоский диск.

    На рынке представлен большой выбор антенн для роутеров с универсальным коннектором SMA.

    На практике : Использование антенны с большим усилением — эффективный способ расширить зону покрытия, т. к. одновременно с усилением сигнала увеличивается чувствительность антенны, а значит роутер начинает “слышать” удаленные устройства. Но вследствие сужения радиолуча от антенны, возникают мертвые зоны вблизи пола и потолка.

    Использовать повторители сигнала

    В помещениях со сложной планировкой и многоэтажных домах эффективно использование репитеров — устройств, повторяющих сигнал основного маршрутизатора.

    Простейшее решение — использовать в качестве повторителя старый роутер. Минус такой схемы — вдвое меньшая пропускная способность дочерней сети, т. к. наряду с клиентскими данными WDS-точка доступа агрегирует восходящий поток от вышестоящего маршрутизатора.

    Подробная инструкция по настройке моста WDS представлена .

    Специализированные повторители лишены проблемы урезания пропускной способности и оснащены дополнительным функционалом. Например, некоторые модели репитеров Asus поддерживают функцию роуминга.

    На практике : Какой бы сложной ни была планировка — репитеры помогут развернуть WiFi сеть. Но любой повторитель — источник интерференционных помех. При свободном эфире репитеры хорошо справляются со своей задачей, но при высокой плотности соседних сетей использование ретранслирующего оборудования в диапазоне 2,4 ГГц нецелесообразно.

    Использовать диапазон 5 ГГц

    Бюджетные WiFi-устройства работают на частоте 2,4 ГГц, поэтому диапазон 5 ГГц относительно свободен и в нем мало помех.

    5 ГГц — перспективный диапазон. Работает с гигабитными потоками и обладает повышенной емкостью по сравнению с 2,4 ГГц.

    На практике : “Переезд” на новую частоту — радикальный вариант, требующий покупки дорогостоящего двухдиапазонного роутера и накладывающий ограничения на клиентские устройства: в диапазоне 5 ГГц работают только новейшие модели гаджетов.

    Проблема с качеством WiFi сигнала не всегда связана с фактическим радиусом действия точки доступа, и ее решение в общих чертах сводится к двум сценариям:

    • В загородном доме чаще всего требуется в условиях свободного эфира покрыть площадь, превышающую эффективный радиус действия роутера.
    • Для городской квартиры дальности роутера обычно достаточно, а основная трудность состоит в устранении мертвых зон и интерференционных помех.

    Представленные в этом материале способы помогут выявить причины плохого приема и оптимизировать беспроводную сеть, не прибегая к замене роутера или услугам платных специалистов.

    Нашли опечатку? Выделите текст и нажмите Ctrl + Enter