В какой сети используется протокол tcp ip. Использование протоколов Интернета в IP-телефонии

Если вкратце, то это набор правил, которые регулируют «общение» компьютеров между собой по сети. Их существует около десятка, и каждый из них определяет правила передачи отдельного типа данных. Но для удобства в обращении их все объединяют в так называемый «стек», называя его именем самого важного протокола - протокола TCP/IP (Transmission Control Protocol и Internet Protocol). Слово ­­«стек» подразумевает, что все эти протоколы представляют собой как бы «стопку протоколов», в которой протокол верхнего уровня не может функционировать без протокола нижнего уровня.

Стек TCP/IP включает 4 уровня:

1. Прикладной - протоколы HTTP, RTP, FTP, DNS. Самый верхний уровень; отвечает за работу прикладных приложений, например почтовых сервисов, отображение данных в браузере и прочее.

2. Транспортный - протоколы TCP, UDP, SCTP, DCCP, RIP. Данный уровень протоколов обеспечивает правильное взаимодействие компьютеров между собой и является проводником данных между разными участниками сети.

3. Сетевой - протокол IP. Этот уровень обеспечивает идентификацию компьютеров в сети, раздавая каждому из них уникальный цифровой адрес.

4. Канальный - протоколы Ethernet, IEEE 802.11, Wireless Ethernet. Самый низкий уровень; он взаимодействует с физическим оборудованием, описывает среду передачи даннных и ее характеристики.

Следовательно, для отображения этой статьи ваш компьютер использует стек протоколов «HTTP - TCP - IP - Ethernet».

Как передается информация по интернету

Каждый компьютер в сети называется хостом и с помощью одноименного протокола получает уникальный IP-адрес. Этот адрес записывается в следующей форме: четыре числа от 0 до 255, разделенных точкой, например, 195.19.20.203. Для успешного обмена информацией по сети IP-адрес также должен включать номер порта. Поскольку информацией обмениваются не сами компьютеры, а программы, каждый тип программы должен также иметь собственный адрес, который и отображается в номере порта. Например, порт 21 отвечает за работу FTP, порт 80 - за работу HTTP. Общее количество портов у компьютера ограничено и равно 65536 с нумерацией от 0 до 65535. Номера портов от 0 до 1023 зарезервированы серверными приложениями, а нишу портов с 1024 по 65535 занимают клиентские порты, которыми программы вольны распоряжаться как угодно. «Клиентские порты» назначаются динамически.

Комбинация IP-адреса и номера порта называется «сокет» . В нем значения адреса и порта разделяются двоеточием, например, 195.19.20.203:110

Таким образом, чтобы удаленный компьютер с IP 195.19.20.203 получил электронную почту, нужно всего лишь доставить данные на его порт 110. А, поскольку, этот порт денно и нощно «слушает» протокол POP3 , который отвечает за прием электронных писем, значит дальнейшее — «дело техники».

Все данные по сети для удобства разбиваются на пакеты. Пакет - это файл размером 1-1,5 Мб, который содержит адресные данные отправителя и получателя, передаваемую информацию, плюс служебные данные. Разбиение файлов на пакеты позволяет намного снизить нагрузку на сеть, т.к. путь каждого из них от отправителя к получателю не обязательно будет идентичным. Если в одном месте в сети образуется «пробка», пакеты смогут ее оминуть, используя другие пути сообщения. Такая технология позволяет максимально эффективно использовать интернет: если какая-то транспортная часть его обрушится, информация сможет и дальше передаваться, но уже по другим путям. Когда пакеты достигают целевой компьютер, он начинает собирать их обратно в цельный файл, используя служебную информацию, которую они содержат. Весь процесс можно сравнить с неким большим паззлом, который, в зависимости от размеров передаваемого файла, может достигать воистину огромных размеров.

Как уже было сказано ранее, IP-протокол выдает каждому участнику сети, в том числе, сайтам уникальный числовой адрес. Однако запомнить миллионы IP-адресов никакому человеку не под силу! Поэтому был создан сервис доменных имен DNS (Domain Name System), который занимается тем, что переводит цифровые IP-адреса в буквенно-цифровые имена, которые гораздо легче запомнить. Например, вместо того, чтобы набирать каждый раз ужасное число 5.9.205.233, можно набрать в адресной строке браузера www.сайт.

Что же происходит, когда мы набираем в браузере адрес искомого сайта? С нашего компьютера отправляется пакет с запросом DNS-серверу на порт 53. Этот порт зарезервирован службой DNS, которая, обработав наш запрос, возвращает IP-адрес, соответствующий буквенно-цифровому имени сайта. После этого наш компьютер соединяется с сокетом 5.9.205.233:80 компьютера 5.9.205.233, на котором расположен HTTP-протокол, отвечающий за отображение сайтов в браузере, и посылает пакет с запросом на получение страницы www.сайт. Нам нужно установить соединение именно на 80-й порт, поскольку именно он соответствует Веб-серверу. Можно, при большом желании, указать 80-й порт и прямо в адресной строке браузера — http://www.сайт:80. Веб-сервер обрабатывает полученный от нас запрос и выдает несколько пакетов, содержащих текст HTML, который отображает наш браузер. В результате мы видим на экране главную страницу

локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, куда входит данный узел.
  • Сетевой (IP-адрес) , состоящий из 4 байтов, например, 109.26.17.100 . Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно или назначен по рекомендации специального подразделения Интернета (Network Information Center, NIC ), если сеть должна работать как составная часть Интернета. Обычно провайдеры услуг Интернета получают диапазоны адресов у подразделений NIC , а затем распределяют их между своими абонентами.

    Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма условно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

  • Символьный (DNS-имя) - идентификатор-имя. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена.
  • Интернет - это совокупность тысяч компьютеров, объединенных в сети, которые, в свою очередь , соединены между собой посредством маршрутизаторов.

    Сеть Интернет имеет иерархическую структуру. Этот подход является эффективным, потому что позволяет идентифицировать компоненты Интернета посредством адресов, также имеющих иерархическую структуру. Старшие биты адреса идентифицируют сеть , в которой находится рабочая станция , а младшие - расположение рабочей станции в этой сети.

    Подавляющее большинство сетей сейчас использует протокол IPv4 (интернет-протокол версии 4) , хотя уже разработана шестая версия протокола IP . Схема адресации протокола IPv4 предусматривает размер адресного поля 32 бита, что дает 2 32 (или 4 294 967 296) потенциальных адресов.

    IP - адрес любой рабочей станции состоит из адреса сети и адреса компьютера в этой сети. В архитектуре адресации предусмотрено пять форматов адреса, каждый из которых начинается с одного, двух, трех или четырех битов, идентифицирующих класс сети ( класс А, В, С, D или Е ). Область сетевого идентификатора ( Network ID ) определяет конкретную сеть в классе, а область Host ID идентифицирует конкретный компьютер в сети, а именно:

    • адреса класса А идентифицируются начальным битом 0 . Следующие семь битов определяют конкретную сеть (число возможных значений - 128, или 2 7). Остальные 24 бита определяют конкретный компьютер в сети, при возможном количестве компьютеров 16 777 216 (2 24). Адреса класса А предназначены для очень крупных сетей с большим количеством рабочих станций;
    • адреса класса В идентифицируются начальной двухбитовой двоичной последовательностью 10 . Следующие 14 битов определяют сеть, при возможном количестве сетей 16 384 (2 14). Остальные 16 битов определяют конкретный компьютер, с возможным количеством компьютеров 65 536 (2 16);
    • адреса класса С идентифицируются начальной трехбитовой последовательностью 110 . Следующие 21 бит определяют сеть, с возможным количеством сетей 2 097 152. Остальные 8 битов определяют конкретный компьютер в сети, с возможным количеством компьютеров 256 (2 8). Большинство организаций имеют адреса класса С ;
    • адреса класса D идентифицируются начальной четырехбитовой последовательностью 1110 . Адреса этого класса предназначены для групповой передачи, и оставшиеся 28 битов определяют групповой адрес;
    • адреса класса Е идентифицируются начальной четырехбитовой двоичной последовательностью 1111 . Адреса этого класса зарезервированы для будущего использования.


    Рис. 2.1.

    Способ, при помощи которого записываются все IP -адреса, называется пунктирной десятичной системой обозначений. Каждое 32-битовое адресное поле разделено на четыре поля в виде ххх.ххх.ххх.ххх , и каждому полю дается десятичное числовое значение от 0 до 255, выраженное в виде одного октета (2 8 = 256, или 0-255). Адреса класса А начинаются с 1 до 127, адреса класса В - с 128 до 191, и адреса класса С - с 192 до 223.

    Класс Наименьший адрес Наибольший адрес
    А 1.0.0.0 126.0.0.0
    В 128.0.0.0 191.255.0.0
    С 192.0.0.0 223.255.255.0
    D 224.0.0.0 239.255.255.255
    Е 240.0.0.0 247.255.255.255

    Строго говоря, адрес идентифицирует только сетевой интерфейс рабочей станции, т. е. точку подключения к сети.

    IP -адреса распределяются Корпорацией Интернет по присвоению имен и номеров (ICANN) . Класс IP -адреса и, следовательно, количество возможных адресов компьютеров зависит от размеров организации. Организация, которой присвоены номера, может затем переназначить их на основе либо статической, либо динамической адресации. Статическая адресация означает жесткую привязку IP -адреса к конкретному компьютеру. При динамической адресации компьютеру присваивается доступный IP - адрес всякий раз при установлении соединения. Динамическое присвоение IP -адресов обычно осуществляется через маршрутизатор , работающий по протоколу DHCP (протокол динамической конфигурации рабочей станции) . Наоборот, если доступ к поставщику осуществляется по xDSL , поставщик услуг Интернет обычно присваивает пользователю один или более статических IP -адресов.

    Как уже отмечалось, протокол IP версии 4 предусматривает размер адресного поля 32 бита, что дает 2 32 (или 4 294 967 296) потенциальных адресов. Однако возрастающая популярность технологии TCP / IP привела к истощению плана нумерации протокола. Дополнительной проблемой является тот факт, что очень большое количество адресов класса А и класса В было выделено крупным организациям, которые в них на самом деле не нуждались, и поскольку фактически использовался только небольшой процент адресов, огромное количество доступных адресов было потеряно.

    Протокол IPv6 решает этот вопрос путем расширения адресного поля до 128 битов, обеспечивая тем самым 2 128 потенциальных адресов, что составляет величину 340.282.366.920.938.463.463.374.607.431.768.211.456.

    Протокол IPv6 обладает также дополнительными функциональными возможностями, хотя для их реализации потребуется модернизация существующего сетевого программного обеспечения.

    Но вернемся к протоколу IPv4. Компьютер , подключенный к сети Интернет , кроме IP -адреса может идентифицироваться доменным именем. Сеть Интернет разделена на логические области (домены). Адреса в системе имен доменов (DNS) , администрирование которых лежит на ICANN , имеют стандартный вид: последовательность имен, разделенных точками. Домены TLD , которые идентифицируются как суффикс доменного имени, бывают двух типов: обобщенные домены верхнего уровня (net, com, org ) и коды стран (ru, fi, ua ).

    Имена доменов гораздо легче запомнить и ввести, но необходимо преобразование для перевода имен доменов в IP -адреса - для того, чтобы разные маршрутизаторы и коммутаторы могли направить информацию в нужный пункт назначения.

    2.2. Модель OSI

    Функционирование сети Интернет основано на сложном комплексе протоколов, обеспечивающих выполнение различных функций - от непосредственно передачи данных до управления конфигурацией оборудования сети.

    Для того, чтобы классифицировать различные протоколы и понять их место в общей структуре технологии межсетевого взаимодействия, удобно воспользоваться так называемым "многоуровневым представлением сетевых протоколов". В рамках такого представления подразумевается, что протоколы более высокого уровня используют функции протоколов более низкого уровня. Классической моделью такого рода является семиуровневая модель взаимодействия открытых систем ( Open Systems Interconnection - OSI ), разработанная ITU -T.

    Первый уровень модели - уровень сетевого интерфейса - поддерживает физический процесс переноса информации между устройствами в сети, т. е. объединяет функции двух уровней OSI - физического и звена данных. Второй уровень сетевого интерфейса обеспечивает физическое соединение со средой передачи, обеспечивает разрешение конфликтов , возникающих в процессе организации доступа к среде (например, используя технологию CSMA /CD в сети Ethernet ), упаковывает данные в пакеты. Пакет - это протокольная единица , которая содержит информацию верхних уровней и служебные поля ( аппаратные адреса , порядковые номера, подтверждения и т. д.), необходимые для функционирования протоколов этого уровня.

    Сетевой уровень отвечает за передачу информации, упакованной в дейтаграммы ( datagram ), от одного компьютера к другому. Дейтаграмма - это протокольная единица , которой оперируют протоколы семейства TCP / IP . Она содержит адресную информацию, необходимую для переноса дейтаграммы через сеть , а не только в рамках одного звена данных. Понятие дейтаграммы никак не связано с физическими характеристиками сетей и каналов связи, что подчеркивает независимость протоколов TCP / IP от аппаратуры. Основным протоколом, реализующим функции сетевого уровня, является протокол IP . Этот протокол отвечает за маршрутизацию, фрагментацию и сборку дейтаграмм в рабочей станции.

    Обмен между сетевыми узлами информацией о состоянии сети, необходимой для формирования оптимальных маршрутов следования дейтаграмм , обеспечивают протоколы маршрутизации - RIP , EGP , BGP , OSPF и др.

    Протокол преобразования адресов ( Address Resolution Protocol - ARP ) преобразует IP -адреса в адреса, использующиеся в локальных сетях (например, Ethernet ). На некоторых рисунках, изображающих архитектуру и взаимосвязь протоколов, ARP размещают ниже IP , чтобы показать его тесную взаимосвязь с уровнем сетевого интерфейса.

    Протокол контрольных сообщений - ( Internet Control Message Protocol - ICMP ) предоставляет возможность программному обеспечению рабочей станции или маршрутизатора обмениваться информацией о проблемах маршрутизации пакетов с другими устройствами в сети. Протокол ICMP - необходимая часть реализации стека протоколов TCP / IP .

    Когда дейтаграмма проходит по сети, она может быть потеряна или искажена. Транспортный уровень решает эту проблему и обеспечивает надежную передачу информации от источника к приемнику. Кроме того, реализации протоколов этого уровня образуют универсальный интерфейс для приложений, дающий доступ к услугам сетевого уровня. Наиболее важными протоколами транспортного уровня являются TCP и UDP .

    Конечные пользователи взаимодействуют с компьютером на уровне пользовательских приложений. Разработано множество протоколов, применяемых соответствующими приложениями. Например, приложения передачи файлов используют протокол FTP , веб-приложения - протокол HTTP . Оба протокола, FTP и HTTP , базируются на протоколе TCP . Приложение Telnet обеспечивает подключение удаленных терминалов. Протокол эксплуатационного управления сетью SNMP позволяет управлять конфигурацией оборудования в сети и собирать информацию о его функционировании, в том числе и об аварийных ситуациях. Приложения, созданные для организации речевой связи и видеосвязи, используют протокол RTP для передачи информации, чувствительной к задержкам. Х Window - популярный протокол для подключения к интеллектуальному графическому терминалу. Этот список можно еще продолжить рядом протоколов.

    Таким образом, IP -сети используют для передачи информации разнообразные протоколы, причем функции протоколов не зависят от того, какие данные передаются. Иными словами, IP , ARP , ICMP , TCP , UDP и другие элементы стека протоколов TCP / IP предоставляют универсальные средства передачи информации, какой бы природы она ни была ( файл по FTP , веб-страница или аудиоданные).

    2.3. Основные протоколы IP-телефонии

    2.3.1. Протокол IP версии 4

    В качестве основного протокола сетевого уровня в стеке протоколов TCP/IP применяется протокол IP, который изначально проектировался как протокол передачи пакетов в сетях, состоящих из большого количества локальных сетей. Поэтому он хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP организует пакетную передачу информации от узла к узлу IP-сети, не используя процедур установления соединения между источником и приемником информации. Кроме того, Internet Protocol является дейтаграммным протоколом: при передаче информации по протоколу IP каждый пакет передается от узла к узлу и обрабатывается в узлах независимо от других пакетов.

    Стек TCP / IP .

    Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

    В операционной системе Microsoft Windows Server 2003 стек TCP/IP выбран в качестве основного, хотя поддерживаются и другие протоколы (например, стек IPX/SPX, протокол NetBIOS).

    Стек протоколов TCP/IP обладает двумя важными свойствами:

      платформонезависимостью, т. е. возможна его реализация на самых разных операционных системах и процессорах;

      открытостью, т. е. стандарты, по которым строится стек TCP/IP, доступны любому желающему.

    История создания TCP / IP .

    В 1967 году Агентство по перспективным исследовательским проектам министерства обороны США (ARPA – Advanced Research Projects Agency) инициировало разработку компьютерной сети, которая должна была связать ряд университетов и научно-исследовательских центров, выполнявших заказы Агентства. Проект получил название ARPANET. К 1972 году сеть соединяла 30 узлов.

    В рамках проекта ARPANET были разработаны и в 1980–1981 годах опубликованы основные протоколы стека TCP/IP – IP, TCP и UDP. Важным фактором распространения TCP/IP стала реализация этого стека в операционной системе UNIX 4.2 BSD (1983).

    К концу 80-х годов значительно расширившаяся сеть ARPANET стала называться Интернет (Interconnected networks – связанные сети) и объединяла университеты и научные центры США, Канады и Европы.

    В 1992 году появился новый сервис Интернет – WWW (World Wide Web – всемирная паутина), основанный на протоколе HTTP. Во многом благодаря WWW Интернет, а с ним и протоколы TCP/IP, получил в 90-е годы бурное развитие.

    В начале XXI века стек TCP/IP приобретает ведущую роль в средствах коммуникации не только глобальных, но и локальных сетей.

    Модель OSI .

    Модель взаимодействия открытых систем (OSI – Open Systems Interconnection) была разработана Международной организацией по стандартизации (ISO – International Organization for Standardization) для единообразного подхода к построению и объединению сетей. Разработка модели OSI началась в 1977 году и закончилась в 1984 году утверждением стандарта. С тех пор модель является эталонной для разработки, описания и сравнения различных стеков протоколов.

    Рассмотрим кратко функции каждого уровня.


    Модель OSI включает семь уровней: физический, канальный, сетевой, транспортный, сеансовый, представления и прикладной.

      Физический уровень (physical layer) описывает принципы передачи сигналов, скорость передачи, спецификации каналов связи. Уровень реализуется аппаратными средствами (сетевой адаптер, порт концентратора, сетевой кабель).

      Канальный уровень (data link layer) решает две основные задачи – проверяет доступность среды передачи (среда передачи чаще всего оказывается разделена между несколькими сетевыми узлами), а также обнаруживает и исправляет ошибки, возникающие в процессе передачи. Реализация уровня является программно-аппаратной (например, сетевой адаптер и его драйвер).

      Сетевой уровень (network layer) обеспечивает объединение сетей, работающих по разным протоколам канального и физического уровней, в составную сеть. При этом каждая из сетей, входящих в единую сеть, называется подсетью (subnet). На сетевом уровне приходится решать две основные задачи – маршрутизации (routing, выбор оптимального пути передачи сообщения) и адресации (addressing, каждый узел в составной сети должен иметь уникальное имя). Обычно функции сетевого уровня реализует специальное устройство – маршрутизатор (router) и его программное обеспечение.

      Транспортный уровень (transport layer) решает задачу надежной передачи сообщений в составной сети с помощью подтверждения доставки и повторной отправки пакетов. Этот уровень и все следующие реализуются программно.

      Сеансовый уровень (session layer) позволяет запоминать информацию о текущем состоянии сеанса связи и в случае разрыва соединения возобновлять сеанс с этого состояния.

      Уровень представления (presentation layer) обеспечивает преобразование передаваемой информации из одной кодировки в другую (например, из ASCII в EBCDIC).

      Прикладной уровень (application layer) реализует интерфейс между остальными уровнями модели и пользовательскими приложениями.

    Структура TCP / IP . В основе структуры TCP/IP лежит не модель OSI, а собственная модель, называемая DARPA (Defense ARPA – новое название Агентства по перспективным исследовательским проектам) или DoD (Department of Defense – Министерство обороны США). В этой модели всего четыре уровня. Соответствие модели OSI модели DARPA, а также основным протоколам стека TCP/IP показано на рис. 2.2.

    Следует заметить, что нижний уровень модели DARPA – уровень сетевых интерфейсов – строго говоря, не выполняет функции канального и физического уровней, а лишь обеспечивает связь (интерфейс) верхних уровней DARPA с технологиями сетей, входящих в составную сеть (например, Ethernet, FDDI, ATM).

    Все протоколы, входящие в стек TCP/IP, стандартизованы в документах RFC.

    Документы RFC .

    Утвержденные официальные стандарты Интернета и TCP/IP публикуются в виде документов RFC (Request for Comments – рабочее предложение). Стандарты разрабатываются всем сообществом ISOC (Internet Society – Сообщество Интернет, международная общественная организация). Любой член ISOC может представить на рассмотрение документ для его публикации в RFC. Далее документ рассматривается техническими экспертами, группами разработчиков и редактором RFC и проходит в соответствии с RFC 2026 следующие этапы, называемые уровнями готовности (maturity levels):

      черновик (Internet Draft) – на этом этапе с документом знакомятся эксперты, вносятся дополнения и изменения;

      предложенный стандарт (Proposed Standard) – документу присваивается номер RFC, эксперты подтвердили жизнеспособность предлагаемых решений, документ считается перспективным, желательно, чтобы он был опробован на практике;

      черновой стандарт (Draft Standard) – документ становится черновым стандартом, если не менее двух независимых разработчиков реализовали и успешно применили предлагаемые спецификации. На этом этапе ещё допускаются незначительные исправления и усовершенствования;

      стандарт Интернета (Internet Standard) – наивысший этап утверждения стандарта, спецификации документа получили широкое распространение и хорошо зарекомендовали себя на практике. Список стандартов Интернета приведен в RFC 3700. Из тысяч RFC только несколько десятков являются документами в статусе «стандарт Интернета».

    Кроме стандартов документами RFC могут быть также описания новых сетевых концепций и идей, руководства, результаты экспериментальных исследований, представленных для информации и т. д. Таким документам RFC может быть присвоен один из следующих статусов:

      экспериментальный (Experimental) – документ, содержащий сведения о научных исследованиях и разработках, которые могут заинтересовать членов ISOC;

      информационный (Informational) – документ, опубликованный для предоставления информации и не требующий одобрения сообщества ISOC;

      лучший современный опыт (Best Current Practice) – документ, предназначенный для передачи опыта конкретных разработок, например реализаций протоколов.

    Статус указывается в заголовке документа RFC после слова Category (Категория). Для документов в статусе стандартов (Proposed Standard, Draft Standard, Internet Standard) указывается название Standards Track , так как уровень готовности может меняться.

    Номера RFC присваиваются последовательно и никогда не выдаются повторно. Первоначальный вариант RFC никогда не обновляется. Обновленная версия публикуется под новым номером. Устаревший и замененный документ RFC получает статус исторический (Historic).

    Все существующие на сегодня документы RFC можно посмотреть, например, на сайте www.rfc-editor.org . В августе 2007 года их насчитывалось более 5000. Документы RFC, упоминаемые в этом курсе, приведены в Приложении I.

    Обзор основных протоколов.

    Протокол IP (Internet Protocol ) – это основной протокол сетевого уровня, отвечающий за адресацию в составных сетях и передачу пакета между сетями. Протокол IP является дейтаграммным протоколом, т. е. не гарантирует доставку пакетов до узла назначения. Обеспечением гарантий занимается протокол транспортного уровня TCP.

    Протоколы RIP (Routing Information Protocol протокол маршрутной информации) и OSPF (Open Shortest Path First – « первыми открываются кратчайшие маршруты») – протоколы маршрутизации в IP-сетях.

    Протокол ICMP (Internet Control Message Protocol протокол управляющих сообщений в составных сетях) предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов сообщает о невозможности доставки пакета, о продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

    Протокол ARP (Address Resolution Protocol – протокол преобразования адресов) преобразует IP-адреса в аппаратные адреса локальных сетей. Обратное преобразование осуществляется с помощью протокола RAPR (Reverse ARP).

    TCP (Transmission Control Protocol – протокол управления передачей) обеспечивает надежную передачу сообщений между удаленными узлами сети за счет образования логических соединений. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт на любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части – сегменты и передает их сетевому уровню. После того как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

    UDP (User Datagram Protocol – протокол дейтаграмм пользователя) обеспечивает передачу данных дейтаграммным способом.

    HTTP (HyperText Transfer Protocol – протокол передачи гипертекста) – протокол доставки web-документов, основной протокол службы WWW.

    FTP (File Transfer Protocol – протокол передачи файлов) – протокол для пересылки информации, хранящейся в файлах.

    POP 3 (Post Office Protocol version 3 – протокол почтового офиса) и SMTP (Simple Mail Transfer Protocol – простой протокол пересылки почты) – протоколы для доставки входящей электронной почты (POP3) и отправки исходящей (SMTP).

    Telnet – протокол эмуляции терминала 1 , позволяющий пользователю подключаться к другим удалённым станциям и работать с ними со своей машины, как если бы она была их удалённым терминалом.

    SNMP (Simple Network Management Protocol – простой протокол управления сетью) предназначен для диагностики работоспособности различных устройств сети.

    Протокол TCP/IP (Transmission Control Protocol/Internet Protocol ) представляет собой стек сетевых протоколов, повсеместно используемый для Интернета и других подобных сетей (например, данный протокол используется и в ЛВС). Название TCP/IP произошло от двух наиболее важных протоколов:

    • IP (интернет протокол) - отвечает за передачу пакета данных от узла к узлу. IP пересылает каждый пакет на основе четырехбайтного адреса назначения (IP-адрес).
    • TCP (протокол управления передачей) - отвечает за проверку корректной доставки данных от клиента к серверу. Данные могут быть потеряны в промежуточной сети. TCP добавлена возможность обнаружения ошибок или потерянных данных и, как следствие, возможность запросить повторную передачу, до тех пор, пока данные корректно и полностью не будут получены.

    Основные характеристики TCP/IP:

    • Стандартизованные протоколы высокого уровня, используемые для хорошо известных пользовательских сервисов.
    • Используются открытые стандарты протоколов, что дает возможность разрабатывать и дорабатывать стандарты независимо от программного и аппаратного обеспечения;
    • Система уникальной адресации;
    • Независимость от используемого физического канала связи;

    Принцип работы стека протоколов TCP/IP такой же как и в модели OSI, данные верхних уровней инкапсулируются в пакеты нижних уровней.

    Если пакет продвигается по уровню сверху вниз - на каждом уровне добавляется к пакету служебная информация в виде заголовка и возможно трейлера (информации помещенной в конец сообщения). Этот процесс называется . Служебная информация предназначается для объекта того же уровня на удаленном компьютере. Ее формат и интерпретация определяются протоколами данного уровня.

    Если пакет продвигается по уровню снизу вверх - он разделяется на заголовок и данные. Анализируется заголовок пакета, выделяется служебная информация и в соответствии с ней данные перенаправляются к одному из объектов вышестоящего уровня. Вышестоящий уровень, в свою очередь, анализирует эти данные и также их разделяет их на заголовок и данные, далее анализируется заголовок и выделяется служебная информация и данные для вышестоящего уровня. Процедура повторяется заново пока пользовательские данные, освобожденные от всей служебной информации, не дойдут до прикладного уровня.

    Не исключено, что пакет так и не дойдет до прикладного уровня. В частности, если компьютер работает в роли промежуточной станции на пути между отправителем и получателем, тогда объект, на соответствующем уровне, при анализе служебной информации определит, что пакет на этом уровня адресован не ему, в следствии чего, объект проведет необходимые мероприятия для перенаправления пакета к пункту назначения или возврата отправителю с сообщением об ошибке. Но так или иначе не будет осуществлять продвижение данных на верхний уровень.

    Пример инкапсуляции можно представить следующим образом:

    Рассмотрим каждые функции уровней

    Прикладной уровень

    Приложения, работающие со стеком TCP/IP, могут также выполнять функции представительного уровня и частично сеансового уровня модели OSI.

    Распространенными примерами приложений являются программы:

    • Telnet
    • HTTP
    • Протоколы электронной почты (SMTP, POP3)

    Для пересылки данных другому приложению, приложение обращается к тому или иному модулю транспортного модуля.

    Транспортный уровень

    Протоколы транспортного уровня обеспечивают прозрачную доставку данных меду двумя прикладными процессами. Процесс, получающий или отправляющий данные, с помощью транспортного уровня идентифицируется на этом уровне номером, который называется номером порта.

    Таким образом, роль адреса отправителя и получателя на транспортном уровне выполняется номером порта. Анализируя заголовок своего пакета, полученного от межсетевого уровня, транспортный модуль определяет по номеру порта получателя по какому из прикладных процессов направленны данные и передает эти данные к соответствующему прикладному процессу.

    Номер порта получателя и отправителя записывается в заголовок транспортным модулем отправляющим данные. Заголовок транспортного уровня содержит также и некоторую другую служебную информацию, и формат заголовка зависит от используемого транспортного протокола.

    Средства транспортного уровня представляют собой функциональную надстройку над сетевым уровнем и решают две основных задачи:

    • обеспечение доставки данных между конкретными программами, функционирующими, в общем случае, на разных узлах сети;
    • обеспечение гарантированной доставки массивов данных произвольного размера.

    В настоящее время в Интернет используются два транспортных протокола – UDP , обеспечивающий негарантированную доставку данных между программами, и TCP , обеспечивающий гарантированную доставку с установлением виртуального соединения.

    Сетевой (межсетевой) уровень

    Основным протоколом этого уровня является протокол IP, который доставляет блоки данных (дейтаграммы) от одного IP-адреса к другому. IP-адрес является уникальным 32-х битным идентификатором компьютера, точнее его сетевого интерфейса. Данные для дейтаграммы передаются IP модулю транспортным уровнем. IP модуль добавляет к этим данным заголовок, содержащий IP-адрес отправителя и получателя, и другую служебную информацию.

    Таким образом, сформированная дейтаграмма передается на уровень доступа к среде передачи, для отправки по каналу передачи данных.

    Не все компьютеры могут непосредственно связаться друг с другом, часто чтобы передать дейтаграмму по назначению требуется направить ее через один или несколько промежуточных компьютеров по тому или ному маршруту. Задача определения маршрута для каждой дейтаграммы решается протоколом IP.

    Когда модуль IP получает дейтаграмму с нижнего уровня, он проверяет IP адрес назначения, если дейтаграмма адресована данному компьютеру, то данные из нее передаются на обработку модулю вышестоящего уровня, если же адрес назначения дейтаграммы чужой, то модуль IP может принять два решения:

    • Уничтожит дейтаграмму;
    • Отправить ее дальше к месту назначения, определив маршрут следования, так поступают промежуточные станции – маршрутизаторы .

    Также может потребоваться на границе сетей, с различными характеристиками, разбить дейтаграмму на фрагменты, а потом собрать их в единое целое на компьютере получателя. Это также задача протокола IP.

    Также протокол IP может отправлять сообщения – уведомления с помощью протокола ICMP , например, в случае уничтожения дейтаграммы. Более никаких средств контроля корректности данных, подтверждения или доставки, предварительного соединения в протоколе нет, эти задачи возложены на транспортный уровень.

    Уровень доступа к среде

    Функции этого уровня следующие:

    • Отображение IP-адресов в физические адреса сети. Эту функцию выполняет протокол ARP ;
    • Инкапсуляция IP-дейтаграмм в кадры для передачи по физическому каналу и извлечение дейтаграмм из кадров, при этом не требуется какого-либо контроля безошибочной передачи, поскольку в стеке TCP/IP такой контроль возложен на транспортный уровень или на само приложение. В заголовке кадров указывается точка доступа к сервису SAP, это поле содержащее код протокола;
    • Определение метода доступа к среде передачи, т.е. способа, с помощью которого компьютеры устанавливает свое право на передачу данных;
    • Определение представления данных в физической среде;
    • Пересылка и прием кадра.

    Рассмотрим инкапсуляцию на примере перехвата пакета протокола HTTP с помощью сниффера wireshark, который работает на прикладном уровне протокола TCP/IP:


    Помимо самого перехваченного протокола HTTP, на основании стека TCP/IP сниффер описывает каждый нижележащий уровень. HTTP инкапсулируется в TCP, протокол TCP в IPv4, IPv4 в Ethernet II.

    Протокол IP

    Основные функции протокола IP

    Основу транспортных средств стека протоколов TCP/IP составляет протокол межсетевого взаимодействия (Internet Protocol, IP) . Он обеспечивает передачу дейтаграмм от отправителя к получателям через объединенную систему компьютерных сетей.

    Название данного протокола - Intrenet Protocol - отражает его суть: он должен передавать пакеты между сетями . В каждой очередной сети, лежащей на пути перемещения пакета, протокол IP вызывает средства транспортировки, принятые в этой сети, чтобы с их помощью передать этот пакет на маршрутизатор, ведущий к следующей сети, или непосредственно на узел-получатель.

    Протокол IP относится к протоколам без установления соединений. Перед IP не ставится задача надежной доставки сообщений от отправителя к получателю. Протокол IP обрабатывает каждый IP-пакет как независимую единицу, не имеющую связи ни с какими другими IP-пакетами. В протоколе IP нет механизмов, обычно применяемых для увеличения достоверности конечных данных: отсутствует квитирование - обмен подтверждениями между отправителем и получателем, нет процедуры упорядочивания, повторных передач или других подобных функций. Если во время продвижения пакета произошла какая-либо ошибка, то протокол IP по своей инициативе ничего не предпринимает для исправления этой ошибки. Например, если на промежуточном маршрутизаторе пакет был отброшен по причине истечения времени жизни или из-за ошибки в контрольной сумме, то модуль IP не пытается заново послать испорченный или потерянный пакет. Все вопросы обеспечения надежности доставки данных по составной сети в стеке TCP/IP решает протокол TCP, работающий непосредственно над протоколом IP. Именно TCP организует повторную передачу пакетов, когда в этом возникает необходимость.

    Важной особенностью протокола IP, отличающей его от других сетевых протоколов (например, от сетевого протокола IPX), является его способность выполнять динамическую фрагментацию пакетов при передаче их между сетями с различными, максимально допустимыми значениями поля данных кадров MTU. Свойство фрагментации во многом способствовало тому, что протокол IP смог занять доминирующие позиции в сложных составных сетях.

    Имеется прямая связь между функциональной сложностью протокола и сложностью заголовка пакетов, которые этот протокол использует. Это объясняется тем, что основные служебные данные, на основании которых протокол выполняет то или иное действие, переносятся между двумя модулями, реализующими этот протокол на разных машинах, именно в полях заголовков пакетов. Поэтому очень полезно изучить назначение каждого поля заголовка IP-пакета, и это изучение дает не только формальные знания о структуре пакета, но и объясняет все основные режимы работы протокола по обработке и передаче IP-дейтаграмм.

    Структура IP-пакета

    IP-пакет состоит из заголовка и поля данных. Заголовок, как правило, имеющий длину 20 байт, имеет следующую структуру (рис. 14.1).

    Рис. 1. Структура заголовка IP-пакета

    Поле Номер версии (Version) , занимающее 4 бит, указывает версию протокола IP. Сейчас повсеместно используется версия 4 (IPv4), и готовится переход на версию 6 (IPv6).

    Поле Длина заголовка (IHL) IP-пакета занимает 4 бит и указывает значение длины заголовка, измеренное в 32-битовых словах. Обычно заголовок имеет длину в 20 байт (пять 32-битовых слов), но при увеличении объема служебной информации эта длина может быть увеличена за счет использования дополнительных байт в поле Опции (IP Options) . Наибольший заголовок занимает 60 октетов.

    Поле Тип сервиса (Type of Service) занимает один байт и задает приоритетность пакета и вид критерия выбора маршрута. Первые три бита этого поля образуют подполе приоритета пакета (Precedence) . Приоритет может иметь значения от самого низкого - 0 (нормальный пакет) до самого высокого - 7 (пакет управляющей информации). Маршрутизаторы и компьютеры могут принимать во внимание приоритет пакета и обрабатывать более важные пакеты в первую очередь. Поле Тип сервиса содержит также три бита, определяющие критерий выбора маршрута. Реально выбор осуществляется между тремя альтернативами: малой задержкой, высокой достоверностью и высокой пропускной способностью. Установленный бит D (delay) говорит о том, что маршрут должен выбираться для минимизации задержки доставки данного пакета, бит Т - для максимизации пропускной способности, а бит R - для максимизации надежности доставки. Во многих сетях улучшение одного из этих параметров связано с ухудшением другого, кроме того, обработка каждого из них требует дополнительных вычислительных затрат. Поэтому редко, когда имеет смысл устанавливать одновременно хотя бы два из этих трех критериев выбора маршрута. Зарезервированные биты имеют нулевое значение.

    Поле Общая длина (Total Length) занимает 2 байта и означает общую длину пакета с учетом заголовка и поля данных. Максимальная длина пакета ограничена разрядностью поля, определяющего эту величину, и составляет 65 535 байт, однако в большинстве хост-компьютеров и сетей столь большие пакеты не используются. При передаче по сетям различного типа длина пакета выбирается с учетом максимальной длины пакета протокола нижнего уровня, несущего IP-пакеты. Если это кадры Ethernet, то выбираются пакеты с максимальной длиной в 1500 байт, умещающиеся в поле данных кадра Ethernet. В стандарте предусматривается, что все хосты должны быть готовы принимать пакеты вплоть до 576 байт длиной (приходят ли они целиком или по фрагментам). Хостам рекомендуется отправлять пакеты размером более чем 576 байт, только если они уверены, что принимающий хост или промежуточная сеть готовы обслуживать пакеты такого размера.

    Поле Идентификатор пакета (Identification) занимает 2 байта и используется для распознавания пакетов, образовавшихся путем фрагментации исходного пакета. Все фрагменты должны иметь одинаковое значение этого поля.

    Поле Флаги (Flags) занимает 3 бита и содержит признаки, связанные с фрагментацией. Установленный бит DF (Do not Fragment) запрещает маршрутизатору фрагментировать данный пакет, а установленный бит MF (More Fragments) говорит о том, что данный пакет является промежуточным (не последним) фрагментом. Оставшийся бит зарезервирован.

    Поле Смещение фрагмента (Fragment Offset) занимает 13 бит и задает смещение в байтах поля данных этого пакета от начала общего поля данных исходного пакета, подвергнутого фрагментации. Используется при сборке/разборке фрагментов пакетов при передачах их между сетями с различными величинами MTU. Смещение должно быть кратно 8 байт.

    Поле Время жизни (Time to Live) занимает один байт и означает предельный срок, в течение которого пакет может перемещаться по сети. Время жизни данного пакета измеряется в секундах и задается источником передачи. На маршрутизаторах и в других узлах сети по истечении каждой секунды из текущего времени жизни вычитается единица; единица вычитается и в том случае, когда время задержки меньше секунды. Поскольку современные маршрутизаторы редко обрабатывают пакет дольше, чем за одну секунду, то время жизни можно считать равным максимальному числу узлов, которые разрешено пройти данному пакету до того сак он достигнет места назначения. Если параметр времени жизни станет нулевым до того, как пакет достигнет получателя, этот пакет будет уничтожен. Время жизни можно рассматривать как часовой механизм самоуничтожения. Значение этого поля изменяется при обработке заголовка IP-пакета.

    Идентификатор Протокол верхнего уровня (Protocol) занимает один байт и указывает, какому протоколу верхнего уровня принадлежит информация, размещения в поле данных пакета (например, это могут быть сегменты протокола TCP (дейтаграммы UDP, пакеты ICMP или OSPF). Значения идентификаторов для различных протоколов приводятся в документе RFC “Assigned Numbers”.

    Контрольная сумма (Header Checksum) занимает 2 байта и рассчитывается только по заголовку. Поскольку некоторые поля заголовка меняют свое значение в процессе передачи пакета по сети (например, время жизни), контрольная сумма проверяется и повторно рассчитывается при каждой обработке IP-заголовка. Контрольная сумма - 16 бит - подсчитывается как дополнение к сумме всех 16-битовых слов заголовка. При вычислении контрольной суммы значение самого поля “контрольная сумма” устанавливается в нуль. Если контрольная сумма неверна, о пакет будет отброшен, как только ошибка будет обнаружена.

    Поля IP-адрес источника (Source IP Address) и IP-адрес назначения (Destination Address) имеют одинаковую длину - 32 бита - и одинаковую структуру.

    Поле Опции (IP Options) является необязательным и используется обычно только при отладке сети. Механизм опций предоставляет функции управления, которые необходимы или просто полезны при определенных ситуациях, однако он не нужен при обычных коммуникациях. Это поле состоит из нескольких подполей, каждое из которых может быть одного из восьми предопределенных типов. В этих подполях можно указывать точный маршрут прохождения маршрутизаторов, регистрировать проходимые пакетом маршрутизаторы, помещать данные системы безопасности, а также временные отметки. Так как число подполей может быть произвольным, то в конце поля Опции должно быть добавлено несколько байт для выравнивания заголовка пакета по 32-битной границе.

    Поле Выравнивание (Padding) используется для того, чтобы убедиться в том, то IP-заголовок заканчивается на 32-битной границе. Выравнивание осуществляется нулями.

    Ниже приведена распечатка значений полей заголовка одного из реальных IP-пакетов, захваченных в сети Ethernet средствами анализатора протоколов Microsoft Network Monitor.

      IP: Version = 4 (0х4)

      IP: Header Length = 20 (0х14)

      IP: Service Type = 0 (0х0)

      IP: Precedence = Routine

      IP: ...0.... = Normal Delay

      IP: ....0... = Normal Throughput

      IP: .....0.. = Normal Reliability

      IP: Total Length = 54 (0х36)

      IP: Identification = 31746 (0x7C02)

      IP: Flags Summary = 2 (0х2)

      IP: .......0 = Last fragment in datagram

      IP: ......1. = Cannot fragment datagram

      IP: Fragment Offset = 0 (0х0) bytes