Трехфазный переменный ток. Чем трехфазное напряжение отличается от однофазного

Трехфазное подключение дает возможность включения в работу генераторов и электродвигателей повышенной мощности, а также возможность работы с разными параметрами напряжения, это зависит от вида включения нагрузки в электрическую цепь. Для работы в трехфазной сети надо понимать соотношение ее элементов.

Элементы трехфазной сети

Основные элементы трехфазной сети - это генератор, линия передачи электрической энергии, нагрузка (потребитель). Для рассмотрения вопроса, что такое линейное и фазное напряжение в цепи, дадим определение, что такое фаза.

Фаза - это электрическая цепь в системе многофазных электрических цепей. Началом фазы является зажим или конец проводника электричества, по которому электроток поступает в него. Экспертами всегда отличались по количеству фаз электрические цепи: однофазная, двухфазная, трехфазная и многофазная.

Наиболее часто применяется трехфазное включение объектов, которое имеет существенное преимущество, как перед многофазными цепями, так и перед однофазной цепью. Различия в следующем:

  • меньшие затраты на транспортирование электрической энергии;
  • способность создания ЭДС для работы асинхронных двигателей - это работа лифтов в многоэтажных домах, оборудования в офисе и на производстве;
  • этот вид подключения дает возможность одновременно пользоваться и линейным, и фазным напряжением.

Что такое фазное и линейное напряжение?

Фазные и линейные напряжения в трехфазных цепях важны для манипуляций в щитах электрического питания, а также для работы оборудования, питающегося от 380 вольт, а именно:

  1. Что такое фазное напряжение? Это напряжение, которое определяется между началом фазы и ее концом, на практике оно определяется между нулевым проводом и фазой.
  2. Линейное напряжение - это когда измеряется величина между двумя фазами, между выводами разных фаз.

На практике напряжение фазное отлично от линейного на 60%, иными словами, параметры линейного напряжения в 1,73 раза больше фазного напряжения. Трехфазные цепи могут иметь линейного напряжения - 380 вольт, что дает возможность получения фазного напряжения в 220 В.

В чем отличие?

Для общества понятие «межфазное напряжение» встречается в многоквартирных, высотных домах, когда первые этажи предусматриваются под офисные помещения, а также в торговых центрах, когда объекты строения подключаются несколькими силовыми кабелями трехфазной сети, которые обеспечивают напряжение 380 Вольт. Такой вид подключения дома обеспечивает работу асинхронных двигателей подъемников, работу эскалатора, промышленного холодильного оборудования.

На практике делать разводку трехфазной цепи достаточно просто, учитывая, что в квартиру идет фаза и ноль, а на офисное помещение - все три фазы + нейтральный провод.

Сложности линейной схемы подключения заключаются в трудности определения в процессе монтажа проводника, что может привести к аварии оборудования. Отличается схема в основном между фазными и линейными подключениями, соединениями обмоток нагрузки и источника электропитания.

Схемы подключения

Есть две схемы подключения источников напряжения (генераторов) в сеть:

  • «треугольником»;
  • «звездой».

Когда выполняется подключение «звездой», начало обмоток генератора соединены в одной точке. Оно не дает возможности увеличения мощности. А подключение по схеме «треугольник» - это когда обмотки соединяются последовательно, а именно, начало обмотки одной фазы соединяется с концом обмотки другой. Это дает способность в три раза увеличить напряжение.

Для лучшего понимания схем подключения специалисты дают определение, что такое фазные и линейные токи:

  • линейный ток - это ток, который протекает в подводнике соединения источника электрической энергии и приемника (нагрузки);

  • фазный ток - это ток, протекающий в каждой обмотке источника электрической энергии или в обмотках нагрузки.

Линейные и фазные токи имеют значение, когда есть несимметричная нагрузка на источник (генератор), это часто встречается в процессе подключения объектов к электроснабжению. Все параметры, относящиеся к линии, - это линейные напряжения и токи, а относящиеся к фазе, - параметры фазных величин.

Из соединения «звезда» видно, что линейные токи имеют такие же параметры, как и фазные. Когда система симметрична, необходимость в нейтральном проводе отпадает, на практике он поддерживает симметрию источника, когда нагрузка несимметрична.

Из-за несимметричности подключаемой нагрузки (а на практике это происходит с включением в цепь осветительных устройств) надо обеспечить независимую работу трем фазам цепи, это можно сделать и в трехпроводной линии, когда фазы приемника соединяются в треугольник.

Специалисты обращают внимание на тот факт, что когда понижается линейное напряжение, изменяются параметры фазного напряжения. Зная значение междуфазное напряжение, можно легко определить величину фазного напряжения.

Как сделать расчет линейного напряжения?

и закон Ома:

Когда выполняется разветвленная система снабжения объекта электроэнергией, иногда есть необходимость вычислить напряжение между двумя проводами «ноль» и «фаза»: IF=IL, что говорит о равности параметров фазных и линейных. Соотношение между фазными проводами и линейными можно найти, используя формулу:

Находящий элемент соотношений напряжений и оценки системы электроснабжения специалистами выполняется по линейным параметрам, когда известно их значение. В системах электроснабжения из четырех проводов выполняется маркировка 380/220 вольт.

Вывод

Используя возможности трехфазной цепи (четырехпроводниковая цепь), можно по-разному выполнять подключения, что дает возможность ее широкого применения. Специалисты считают трехфазное напряжение для подключения универсальным вариантом, так как оно дает возможность подключать нагрузку большой мощности, жилые помещения, офисные здания.

В многоквартирных домах основными потребителями являются бытовые приборы, рассчитанные на сеть 220 В, по этой причине важно сделать равномерное распределение нагрузки между фазами цепи, это достигается включением квартир в сеть по шахматному принципу. Отличается распределение нагрузки частных домов, в них она выполняется по величинам нагрузки на каждую фазу всего домашнего оборудования, токами в проводниках, проходящими в период максимального включения приборов.

Под термином “фаза” в энергетике принято понимать отдельную часть электрической цепи многофазной системы или-же, момент времени в синусоидальном выражении векторов тока или напряжения.

Основная особенность многофазных (n) систем состоит в объединении отдельных схем с одинаковыми электрическими параметрами ЭДС, напряжения и тока, которые разнесены по времени на одинаковые интервалы периода ∆t=T/n выражаемые, также в угловых величинах фазы ∆ωt=360/n (в градусах) либо ∆ωt=2π/n (в радианах).

Трехфазные цепи . В энергетике применяются три объединенных электрических схемы (фазы), n=3 . Соответственно все цепи разнесены на 120 угловых градусов. Для их обозначения в соответствии с ГОСТ-ом используются:

Заглавные латинские буквы А, В, С в качестве основного обозначения;
- арабские цифры 1, 2, 3 для дополнительной маркировки;
- заглавные латинские буквы R, S, T в международном формате.

В процессе эксплуатации головная организация произвольно выбирает первую фазу “А” , а остальные нумерует в последовательности прохождения векторами напряжения (u) и тока (i) северного направления координат.

В трехфазной системе принято под прямой последовательностью понимать в нормальном режиме работы вращение векторов А>В>С>А против часовой стрелки. При этом, вектора в цепи В запаздывают от цепи А и обгоняют цепь С на 120°.

Противоположное вращение векторов по часовой стрелке считается обратной последовательностью.

Созданные в системе фазы могут объединяться в единую схему или работать изолированно, без взаимных связей. В не связанной системе величины мгновенных ЭДС в фазах разнесены по углу на 120° и чередуются по схеме А>В>С>А . Их значения описываются формулами:

e А =Е m sinωt, E А =Еe j0° ;
e В =Е m sin(ωt-120°), E В =Еe -j120° ;
e С =Е m sin(ωt-240°)=Е m sin(ωt+120°), E С =Еe j120° .

Диаграммы графиков функций и векторные выражения поясняются соответствующими рисунками.

В независимой симметричной 3-х фазной схеме всегда действует правило: любые переменные величины е, u, i в каждый момент времени при суммировании равны нулю. Иначе говоря: u А +u В +u С =0 .

Для примера демонстрируем вычисления сумм ЭДС при трех значениях углов:

При равной нагрузке для каждой фазы, когда Z A =Z B =Z C =Ze jφ , формируются одинаковые по длине, но сдвинутые по углу от напряжений (ЭДС) вектора фазных токов. Они разнесены между собой на 120° и тоже создают 3-х фазную симметричную систему, в которой действуют законы:

i A +i B +i C =0;
I A +I B +I C =0.

Из трех не связанных систем формируется единая связанная путем подключения (объединения) обратных (возвратных) проводов в единую магистраль. При этом способе в обобщенном проводе общий ток от трех фаз сложится и станет равным нулю. Процесс описывает 1-й закон Кирхгофа :

i N =i A +i B +i C =0 .

Практический вывод очевиден: отсутствие необходимости обратного провода, что ведет к значительной экономии материальных средств для транспортировки электроэнергии от 3-х фазного генератора к 3-х фазному электроприемнику.

Преимущества 3-х фазных систем:

1. Транспортировка электрических мощностей 3-х фазной схемой к потребителям от источников экономически эффективнее, чем для другого количества фаз. При снижении количества магистралей с 6 до 3 не только экономятся средства на провода, но и снижаются энергетические потери в них;

2. Для создания 3-х фазной системы не требуется создавать сложных технических конструкций. Круговое вращательное движение давно используется для работы различных генераторов и двигателей;

3. Технология изготовления 3-х фазных генераторов, трансформаторов и двигателей проста и отлажена, а все устройства отличаются надежностью, долговечностью, дешевизной и уменьшенными габаритами;

4. 3-х фазная схема позволяет одновременно применять электрические приемники с разными номиналами напряжений, отличающимися на величину √3 , которая определяется наличием 2-х уровней напряжений (фазного и линейного). Uл=√3xUф.


Эти очевидные преимущества систем широко используются в энергетике для выработки электрической энергии и передачи/распределения ее к электроприемникам с 1989 года.

Основоположником и разработчиком их является инженер Михаил Осипович Доливо-Добровольский, работавший в немецкой фирме AEG (Allgemeine Elektricitäts-Gesellschaft).


Современный образ жизни невозможно представить без электроэнергии и благ, которые с ней связаны. Отсутствие природного газа легко компенсируется твердотопливными источниками тепла, вода также доступна, а вот без электричества настает самый настоящий «конец света».

Подавляющее большинство современных электростанций генерируют трехфазный переменный ток. Среди его преимуществ особо следует отметить легкость получения и последующих преобразований, высокую надежность и простоту конструкции предназначенных для него Трехфазный ток - это наиболее распространенный во всем мире тип электроэнергии.

Система трехфазного электрического тока представляет собой совокупность трех цепей однофазного тока с одинаковой частотой и амплитудой, однако, смещенных относительно друг друга на 120 градусов (или, что одно и то же, 1/3 периода). Каждая из этих цепей называется фазой, соответственно, все три формируют трехфазный ток.

Теоретические основы довольно просты: металлическая рамка вращается в магнитном поле, пересекая линии напряженности. Чтобы в соответствии с получить электрический ток, достаточно подключить к ее выводам нагрузку и создать цепь. Если же необходим трехфазный ток, то устройство усложняется: в механизме располагаются три идентичные рамки, сдвинутые одна относительно другой на 120 градусов. Итогом является генерация трех электродвижущих сил (ЭДС). В стандартных электростанциях скорость вращения неизменна.

На практике же реализация немного отлична от теории. Трехфазный ток создают специальные машины - генераторы. В них обмотки фазных цепей неподвижны (сравните с теорией) и определенным образом расположены на полюсах статора (неподвижная часть машины). А вращающееся магнитное поле создается ротором. Момент вращения ему сообщает энергия падающей воды в гидроэлектростанциях, паровой турбины в АЭС и пр.

Одна из особенностей цепей, использующих трехфазный ток, заключается в задействовании на стороне потребителя всего трех или четырех проводов - три фазных и нулевой. Этого удается добиться благодаря способу соединения обмоток генератора - звездой или треугольником.

Соединение звездой подразумевает, что концы всех трех обмоток сходятся в одной нулевой точке. Исходя из закона Кирхгофа, следует, что сумма всех токов в этой точке (узле) равняется нулю, поэтому никакого замыкания не происходит. Из нулевой точки выводится Напряжение, замеренное между этим проводом и любым из трех линейных, в 1.73 раз меньше, чем значение напряжения между самими линейными проводами. В первом случае получается фазное напряжение, а во втором линейное.

Важной особенностью соединения звездой является необходимость избегать перекоса фаз, то есть, контролировать, чтобы протекающие в ветках токи были примерно равны. Та небольшая неизбежная разница приводит к появлению небольшого тока в нулевом проводе, но он невелик.

Совершенно иной тип соединения обмоток генератора - треугольником, позволяет упразднить нулевой провод. При ее реализации каждый конец обмотки соединяется с началом следующей, фактически, образуя треугольник, а напряжения снимаются с его вершин. При таком способе фазное и равны. Также необходим контроль за равенством токов в ветвях, так как при игнорировании этого общее значение тока в замкнутой цепи может стать чрезмерным, вызывая нагрев генератора и выход его из строя.

Большинство электрических двигателей, предназначенных для трехфазной сети, предусматривают возможность выбора способа соединения обмоток на звезду или треугольник. Это позволяет выбирать рабочее напряжение. Так, при соединении обмоток нагрузки звездой расчетное напряжение будет в 1.73 раз меньше, чем при треугольнике.

Большинство генераторов переменного тока, а также линий, передающих электроэнергию, используют трехфазные системы. Передача тока осуществляется по трем линиям (или четырем) вместо двух. Трехфазный ток представляет собой систему переменного электротока, где значения токов и напряжений меняются по синусоидальному закону. Частота синусоидальных колебаний тока в России и Европе – 50 Гц.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-15-768x530..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

Трехфазная ЛЭП

Почему используют трехфазный ток

Транспортировка электроэнергии от электростанций до отдаленных точек предполагает использование очень длинных проводов и кабелей, имеющих большое сопротивление. Это означает, что часть энергии будет потеряна, рассеиваясь в виде тепла. Уменьшив токи, передаваемые по ЛЭП, можно значительно снизить потери.

Наиболее распространенной формой производства электроэнергии является трехфазная генерация. В промышленности трехфазный переменный ток часто применяется для работы электродвигателей.

Преимущества трехфазной системы:

  1. Возможность наличия фазного и линейного напряжений в трехфазных цепях двух разных значений: высокое – для мощных потребителей, низкое – для остальных;
  2. Сниженные потери при транспортировке энергии, следовательно, использование более дешевых проводов и кабелей;
  3. Трехфазные машины имеют более стабильный крутящий момент, чем однофазные (выше производительность);
  4. Лучшая производительность в трехфазных генераторах;
  5. В некоторых случаях постоянный ток должен получаться из переменного. При этом использование 3 фазного тока является существенным преимуществом, так как пульсация выпрямляемого напряжения значительно ниже.

Что такое трехфазный ток

Трехфазная система переменного тока – это три синусоидальных токовых сигнала, различия между которыми составляют треть цикла или 120 электрических градусов (полный цикл – 360°). Они проходят свои максимумы в регулярном порядке, называемом фазовой последовательностью. Синусоидальное напряжение пропорционально косинусу или синусу фазы.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-11-210x140..jpg 615w" sizes="(max-width: 600px) 100vw, 600px">

Трехфазный ток

Три фазы поставляются обычно по трем (или четырем) проводам, а фазные и линейные напряжения в трехфазных цепях представляют собой разности потенциалов между парами проводников. Фазные токи являются токовыми величинами в каждом проводнике.

Схемы трехфазных цепей

В схемной конфигурации «звезда» имеется три фазных провода. Если нулевые точки системы питания и приемника соединены, то получается четырехпроводная «звезда».

В схеме различаются межфазное напряжение, находящееся между проводниками фазы (его еще именуют линейным), и фазное – между отдельными проводниками фазы и N-проводником.

Что такое фазное напряжение, наиболее наглядно определяется с помощью построения векторов – это три симметричных вектора U(А), U(В) и U(С). Здесь же видно, что такое линейное напряжение:

  • U(АВ) = U(А) – U(В);
  • U(ВС) = U(В) – U(С);
  • U(СА) = U(С) – U(А).

Важно! Векторные построения дают представления о сдвиге между согласующимися фазным и межфазным напряжением – 30°.

Следовательно, линейное напряжение для звездной схемы с равномерными нагрузками можно рассчитать так:

Uab = 2 x Ua x cos 30° = 2 x Ua x √3/2 = √3 x Ua.

Аналогично находятся другие показатели фазного напряжения.

Линейное и фазное напряжение, если суммировать векторные величины всех фаз, равны нулю:

  • U(А) + U(В) + U(С) = 0;
  • U(АВ) + U(ВС) + U(СА) = 0.

Если к «звезде» подсоединяется электроприемник с сопротивлением, идентичным в каждой фазе:

то можно произвести расчет линейного и фазного токов:

  • Ia = Ua/Za;
  • Ib = Ub/Zb;
  • Ic = Uc/Zc.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/3-12-600x335.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-12-768x429..jpg 902w" sizes="(max-width: 600px) 100vw, 600px">

Построение векторов в схеме «Y»

Применительно для общих случаев «звездной» системы линейные токовые величины идентичны фазовым.

Обычно предполагается, что источник, питающий электроприемники, симметричен, и только импеданс определяет работу схемы.

Поскольку суммирующий токовый показатель соответствует нулю (закон Кирхгофа), то в случае четырехпроводной системы в нейтральном проводнике ток не течет. Система будет вести себя одинаково, независимо, существует нейтральный проводник или нет.

Для активной мощности трехфазного приемника справедлива формула:

P = √3 x Uф I x cos φ.

Реактивная мощность:

Q = √3 x Uф I x sin φ.

«Y» при асимметричной нагрузке

Это такая схемная конфигурация, где токовая величина одной фазы отличается от другой, либо различны фазовые сдвиги токов по сравнению с напряжениями. Межфазовые напряжения будут оставаться симметричными. По векторным построениям определяется появление сдвига нулевой точки от центра треугольника. Результатом является асимметрия фазных величин напряжений и появление Uo:

Uo = 1/3 (U(А) + U(В) + U(С)).

Несмотря на асимметричную нагрузку, суммирующий токовый показатель нулевой.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-11-768x515..jpg 210w, https://elquanta.ru/wp-content/uploads/2018/03/4-11.jpg 901w" sizes="(max-width: 600px) 100vw, 600px">

«Y» без N-проводника при асимметричной нагрузке

Важно! Работа схемы с асимметричной нагрузкой зависит от того, есть или нет N-проводник.

Иначе ведет себя схема, когда подключен N-проводник с незначительным полным сопротивлением Zo = 0. Нулевые точки ИП и электроприемника оказываются гальванически связанными и имеют одинаковый потенциал. Фазное напряжение разных фаз приобретает идентичное значение, а токовая величина в N -проводнике:

Io = I(А) + I(В) + I(С).

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-6-210x140..jpg 720w" sizes="(max-width: 600px) 100vw, 600px">

Схема четырехпроводной «Y»

При передаче мощности принято использовать трехпроводные системы на уровнях высокого и среднего напряжения. На низком уровне напряжения, где трудно избежать несбалансированных нагрузок, применяются четырехпроводные системы.

Схема «Δ»

Подключая конец каждой фазы электроприемника к началу следующей, можно получить трехфазный ток с последовательно подсоединенными фазами. Полученная схемная конфигурация называется «треугольником». В таком виде она может работать только как трехпроводная.

С помощью векторных построений, понятных даже для чайников, иллюстрируются фазные и линейные напряжения и токи. Каждая фаза электроприемника оказывается подключенной на линейное напряжение между двумя проводниками. Линейное и фазное напряжение идентичны на приемнике электроэнергии.

Png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/6-3-768x239..png 910w" sizes="(max-width: 600px) 100vw, 600px">

Схема «Δ» и построения векторов

Межфазовые токи для «треугольника» – I(А), I(В), I(С). Фазные – I(АВ), IВС), I(СА).

Линейные токи находятся из векторных построений:

  • I(А) = I(АВ) – I(СА);
  • I(В) = I(ВС) – I(АВ);
  • I(С) = I(СА) – I(ВС).

Суммирующая токовая величина в симметричной системе соответствует нулю. Среднеквадратичные величины фазных токов:

I(АВ) = I(ВС) = I(СА) = U/Z.

Поскольку фазовый сдвиг между U и I равен 30°, линейный ток в данной конфигурации будет равен:

I(А) = I(АВ) – I(СА) = 2 x I(АВ) x cos 30° = 2 x Iф x √3/2 = √3 x Iф.

Важно! Эффективная величина линейного тока превышает в √3 раз эффективную величину тока фазы.

Трехфазный и однофазный ток

Схемная конфигурация «Y» дает возможность использовать два разных напряжения при питании потребителей бытовой и промышленной сети: 220 В и 380 В. 220 В получается с использованием двух проводников. Один из них –фазный, другой – N-проводник. Напряжение между ними соответствует фазному. Если взять 2 проводника, оба представляющие собой фазы, то напряжение между фазами носит название линейного и равно 380 В. Для подключения используются все 3 фазы.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/7-3.jpg 700w" sizes="(max-width: 600px) 100vw, 600px">

Распределение напряжений в однофазной и трехфазной системах

Основные различия однофазной и трехфазной систем:

  1. Однофазный ток предполагает питание через один проводник, трехфазный – через три;
  2. Для завершения цепи однофазного питания требуется 2 проводника: еще один нейтральный, для трехфазного – 4 (плюс нейтральный);
  3. Наибольшая мощность передается по трем фазам, в отличие от однофазной системы;
  4. Однофазная сеть более простая;
  5. При неисправности фазного провода в однофазной сети питание полностью пропадает, в трехфазной – подается по двум оставшимся фазам.

Интересно. Никола Тесла, первооткрыватель многофазных токов и изобретатель асинхронного двигателя, использовал двухфазный ток с разностью фаз 90°.Такая система пригодна для создания вращающегося магнитного поля больше, чем однофазная, но меньше, чем трехфазная. Двухфазная система поначалу получила распространение в США, но затем полностью исчезла из употребления.

Сегодня почти все электроснабжение основано на низкочастотном трехфазном токе при параллельном использовании индивидуальных фаз. Практически все электростанции имеют генераторы, производящие трехфазный ток. Трансформаторы могут работать с трехфазным или однофазным током. Наличие реактивной мощности в подобных сетях требует установки компенсирующего оборудования.

Видео

В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.

Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – . Возможен еще третий провод – заземление.

Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.

Отличия

Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.

  • В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
  • Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
  • Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
  • Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.

Преимущества 1-фазной сети

Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные , в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.

В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в . А при установке экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.

Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить , так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.

Большое значение имеет размер , который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного , который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть , и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома

В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:

  • Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
  • Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
  • Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
  • Необходим монтаж в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частных домов
  • Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
  • Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
  • Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение ввода.
  • Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.

В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м 2 . Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.