Тип Шифрования WiFi — Какой Выбрать, WEP или WPA2-PSK Personal-Enterprise Для Защиты Безопасности Сети? WPA2-Enterprise, или правильный подход к безопасности Wi-Fi сети.

13.09.2019 Photoshop

Широкополосный доступ в интернет уже давно перестал быть роскошью не только в крупных городах, но и в отдалённых регионах. При этом многие сразу же обзаводятся беспроводными роутерами, чтобы сэкономить на мобильном интернете и подключить к скоростной линии смартфоны, планшеты и прочую портативную технику. Более того, провайдеры всё чаще сразу устанавливают своим клиентам маршрутизаторы со встроенной беспроводной точкой доступа.

Между тем, потребители далеко не всегда понимают, как на самом деле работает сетевое оборудование и какую опасность оно может нести. Главное заблуждение состоит в том, что частный клиент просто не представляет, что беспроводная связь может нанести ему какой-то ущерб – ведь он не банк, не секретная служба и не владелец порнохранилищ. Но стоит только начать разбираться, как вам сразу захочется вернуться к старому доброму кабелю.

1. Никто не станет взламывать мою домашнюю сеть

Вот главное заблуждение домашних пользователей, ведущее к пренебрежению элементарными нормами сетевой безопасности. Принято считать, есто если вы не знаменитость, не банк и не интернет-магазин, то никто не будет тратить на вас время, ведь результаты будут неадекватны приложенным усилиям.

Более того, почему-то упорно циркулирует мнение, что якобы небольшие беспроводные сети взломать сложнее, чем крупные, в чём есть крупица правды, но в целом это тоже миф. Очевидно, это утверждение основано на том, что у мелких локальных сетей ограниченная дальность распространения сигнала, поэтому достаточно понизить его уровень, и хакер просто не сможет обнаружить такую сеть из припаркованного рядом автомобиля или кафе по-соседству.

Возможно, когда-то это было так, но сегодняшние взломщики оснащены высокочувствительными антеннами, способными принять даже самый слабый сигнал. И тот факт, что у вас на кухне планшет постоянно теряет связь, вовсе не означает, что хакеру, сидящему в машине за два дома от вас, не удастся покопаться в вашей беспроводной сети.

Что же касается мнения, что взлом вашей сети не стоит потраченных усилий, то это совсем не так: в ваших гаджетах хранится море всевозможной персональной информации, которая, как минимум, позволит злоумышленнику от вашего имени заказать покупки, получить кредит, или, воспользовавшись методами социальной инженерии, добиться ещё более неочевидных целей вроде проникновения в сеть вашего работодателя или даже его партнёров. При этом отношение к сетевой безопасности у простых пользователей сегодня настолько пренебрежительное, что взломать домашнюю сеть не составит особого труда даже для новичков.

2. Дома не нужен двух- или трёхдиапазонный роутер

Считается, что многодиапазонные роутеры нужны только особо требовательным владельцам огромного количества гаджетов, которые хотят выжать из беспроводной связи максимально доступную скорость. Между тем, любому из нас не помешает хотя бы двухдиапазонный маршрутизатор.

Главное преимущество многодиапазонного роутера заключается в том, что разные устройства можно «раскидать» по разным диапазонам, и тем самым повысить потенциально возможную скорость передачи данных и, конечно же, надёжность связи. Например, вполне целесообразно было бы подключать ноутбуки к одному диапазону, телевизионные приставки – ко второму, а мобильные гаджеты – к третьему.

3. Диапазон 5 ГГц лучше диапазона 2,4 ГГц

Оценившие преимущества частотного диапазона 5 ГГц обычно рекомендуют всем переходить на него и вообще отказаться от использования частоты 2,4 ГГц. Но, как обычно, не всё так просто.

Да, 5 ГГц физически менее «заселён», чем более массовый 2,4 ГГц – в том числе и потому, что на 2,4 ГГц работает больше всего устройств на базе старых стандартов. Однако 5 ГГц уступает в дальности связи, в особенности в том, что касается проникновения через бетонные стены и другие преграды.

В целом, здесь нет однозначного ответа, можно посоветовать лишь использовать тот диапазон, в котором конкретно у вас приём лучше. Ведь вполне может оказаться, что в каком-то конкретном месте и полоса 5 ГГц перегружена устройствами – хотя это и очень маловероятно.

4. Не нужно трогать настройки роутера

Предполагается, что настройку оборудования лучше оставить профессионалам и ваше вмешательство способно только навредить работоспособности сети. Обычный способ представителей провайдера (и сисадминов) запугать пользователя, чтобы снизить вероятность неправильных настроек и последующих вызовов на дом.

Понятно, что если вы вообще не представляете, о чём там речь, лучше ничего не трогать, но даже непрофессионал вполне способен изменить некоторые настройки, повысив защищённость, надёжность и производительность сети. Хотя бы зайдите в веб-интерфейс и ознакомьтесь с тем, что там можно изменить – но если вы не знаете, что это даст, лучше оставьте всё как есть.

В любом случае есть смысл внести четыре поправки, если они уже не сделаны в настройках вашего роутера:

1) По возможности переключайтесь на новый стандарт – если его поддерживает как роутер, так и ваши устройства. Переход с 802.11n на 802.11ac даст существенный прирост скорости, как и переключение с более старых 802.11b/g на 802.11n.

2) Поменяйте тип шифрования . Некоторые установщики до сих пор оставляют домашние беспроводные сети либо полностью открытыми, либо с устаревшим стандартом шифрования WEP. Обязательно нужно поменять тип на WPA2 c шифрованием AES и сложным длинным паролем.

3) Измените логин и пароль по умолчанию . Практически все провайдеры при установке нового оборудования оставляют эти данные по умолчанию – если только их специально не попросить о смене. Это общеизвестная «дыра» домашних сетей, и любой хакер для начала обязательно попробует воспользоваться именно ею.

4) Отключите WPS (Wi-Fi Protected Setup) . Технология WPS обычно включена в роутерах по умолчанию – она предназначена для быстрого подключения совместимых мобильных устройств к сети без ввода длинных паролей. Вместе с тем WPS делает вашу локальную сеть очень уязвимой для взлома путём метода «грубой силы» – простого подбора пин-кода WPS, состоящего из 8 цифр, после чего злоумышленник без проблем получит доступ к ключу WPA/WPA2 PSK. При этом из-за ошибки в стандарте достаточно определить всего 4 цифры, а это уже всего 11 000 сочетаний, и для взлома понадобится перебрать далеко не все из них.

5. Сокрытие SSID спрячет сеть от хакеров

SSID – это сервисный идентификатор сети или попросту название вашей сети, которое используют для установки соединения различные устройства, когда-либо подключавшиеся к ней. Отключив трансляцию SSID, вы не будете появляться в соседском списке доступных сетей, но это не значит, что хакеры не смогут её найти: демаскировка скрытого SSID – задача для новичка.

Вместе с тем, спрятав SSID, вы даже упростите жизнь хакерам: все устройства, пытающиеся подключиться к вашей сети, станут перебирать ближайшие точки доступа, и могут подключиться к сетям-«ловушкам», специально созданным злоумышленниками. Можно развернуть такую подменную открытую сеть под вашим же раскрытым SSID, к которому ваши девайсы будут просто подключаться автоматически.

Поэтому общая рекомендация такова: дайте вашей сети такое название, в котором никак бы не упоминался ни провайдер, ни производитель роутера, ни какая-то личная информация, позволяющая идентифицировать вас и нанести точечные атаки по слабым местам.

6. Шифрование не нужно, если есть антивирус и брандмауэр

Типичный пример того, когда путают тёплое с мягким. Программы защищают от программных же угроз онлайн или уже находящихся в вашей сети, они не защищают вас от перехвата самих данных, передаваемых между роутером и вашим компьютером.

Для обеспечения сетевой безопасности нужен комплекс средств, куда входят и протоколы шифрования, и аппаратные или программные брандмауэры, и антивирусные пакеты.

7. Шифрования WEP достаточно для домашней сети

WEP небезопасен в любом случае, и он поддаётся взлому за считанные минуты с помощью смартфона. По уровню безопасности он мало отличается от полностью открытой сети, и это его главная проблема. Если вы интересуетесь историей вопроса, то можете найти в интернете массу материалов о том, что WEP запросто ломали ещё в начале «нулевых». Нужна ли вам такая «безопасность»?

8. Роутер с шифрованием WPA2-AES невозможно взломать

Если брать «сферический роутер с шифрованием WPA2-AES в вакууме», то это правда: по последним оценкам, при существующих вычислительных мощностей на взлом AES методами «грубой силы» уйдут миллиарды лет. Да, миллиарды.

Но это вовсе не означает, что AES не позволит хакеру добраться до ваших данных. Как и всегда, главная проблема – человеческий фактор. В данном случае, многое зависит от того, насколько сложным и грамотно составленным будет ваш пароль. При «бытовом» подходе к придумыванию паролей, методов социальной инженерии будет достаточно для взлома WPA2-AES за достаточно короткий срок.

О правилах составления хороших паролей мы подробно не так давно, так что всех интересующихся отсылаем к этой статье.

9. Шифрование WPA2-AES снижает скорость передачи данных

Технически, это действительно так, но в современных роутерах есть аппаратные средства, позволяющие свести это снижение к минимуму. Если вы наблюдаете существенное замедление соединения, это означает, что вы используете устаревший роутер, в которых были реализованы немного иные стандарты и протоколы. Например, WPA2-TKIP. Сам по себе TKIP был более безопасным, чем его предшественник WEP, но представлял из себя компромиссное решение, позволяющее использовать старое «железо» с более современными и защищёнными протоколами. Чтобы «подружить» TKIP c новым типом шифрования AES, использовались различные программные ухищрения, что и приводило к замедлению скорости передачи данных.

Ещё в 2012 году в стандарте 802.11 TKIP был признан недостаточно безопасным, но он всё ещё часто встречается в роутерах старых выпусков. Решение проблемы одно – купить современную модель.

10. Работающий роутер менять не нужно

Принцип для тех, кого сегодня вполне устраивает механическая пишущая машинка и телефон с наборным диском. Новые стандарты беспроводной связи появляются регулярно, и с каждым разом не только повышается скорость передачи данных, но и безопасность сети.

Сегодня, когда стандарт 802.11ac предусматривает передачу данных со скоростью выше 50 Мбит/с, старый роутер с поддержкой 802.11n и всех предыдущих стандартов может ограничивать потенциальную пропускную способность сети. В случае с тарифными планами, предусматривающими скорости выше 100 Мбит/с, вы просто будете платить лишние деньги, не получая полноценной услуги.

Конечно, срочно менять работающий роутер вовсе не обязательно, но в один прекрасный день настанет момент, когда к нему не сможет подключиться ни одно современное устройство.

), который позволяет защитить Вас от несанкционированного подключения, например, вредных соседей. Пароль паролем, но его ведь могут и взломать, если конечно, среди Ваших соседей нет «хакеров-взломщиков». Поэтому, Wi-Fi протокол еще имеет и различные типы шифрования, которые как раз и позволяют защитить Wi-Fi от взлома, хоть и не всегда.

На данный момент существуют такие типы шифрования, как OPEN , WEB , WPA , WPA2 , о которых мы сегодня и поговорим.

OPEN

Шифрование OPEN по сути никакого шифрования и не имеет, другими словами – нет защиты. Поэтому, любой человек, который обнаружит Вашу точку доступа, сможет легко к ней подключиться. Лучше всего будет поставить шифрования WPA2 и придумать какой-нибудь сложный пароль.

WEB

Данный тип шифрования появился в конце 90-х и является самым первым. На данный момент WEB (Wired Equivalent Privacy ) – это самый слабый тип шифрования. Некоторые роутеры и другие устройства, поддерживающие Wi-Fi, исключают поддержку WEB.

Как я уже сказал, шифрование WEB очень ненадежно и его лучше избегать, как и OPEN, так как, он создает защиту на очень короткое время, по истечению которого можно с легкостью узнать пароль любой сложности. Обычно пароли WEB имеют 40 или 103 бита, что позволяет подобрать комбинацию за несколько секунд.

Дело в том, что WEB передает части этого самого пароля (ключа) вместе с пакетами данных, а эти пакеты можно с легкостью перехватить. На данный момент существуют несколько программ, занимающихся как раз перехватом этих самых пакетов, но говорить об этом в этой статье я не буду.

WPA/WPA2


Данный тип является самым современным и новых пока что еще нет. Можно задавать произвольную длину пароля от 8 до 64 байтов и это достаточно сильно затрудняет взлом.

А тем временем, стандарт WPA поддерживает множество алгоритмов шифрования, которые передаются после взаимодействия TKIP с CCMP . TKIP был что-то типа мостика между WEB и WPA , и существовал до тех пор, пока IEEE (Institute of Electrical and Electronics Engineers) создавали полноценный алгоритм CCMP . Между тем, TKIP тоже страдал от некоторых типов атак, поэтому его тоже считают не очень безопасным.

Также, шифрование WPA2 использует два режима начальной аутентификации, другими словами, проверки пароля для доступа пользователя (клиента) к сети. Называются они PSK и Enterprise . Первый режим – означает вход по одному паролю, который мы вводим при подключении. Для больших компаний это не очень удобно, так как, после ухода каких-то сотрудников, приходится каждый раз менять пароль, чтобы он не получил доступ к сети, и уведомлять об этом остальных сотрудников, подключенных к этой сети. Поэтому, чтобы все это было более удобно, придумали режим Enterprise , который позволяет использовать множество ключей, хранящихся на сервере RADIUS .

WPS

Технология WPS или по-другому QSS позволяет подключаться к сети посредством простого нажатия кнопки. В принципе о пароле можно даже и не думать. Но тут тоже есть свои недостатки, которые имеют серьезные просчеты в системе допуска.

С помощью WPS мы можем подключаться к сети по коду, состоящему из 8 символов, по-другому PIN . Но в данном стандарте существуют ошибка из-за которой узнав всего 4 цифры данного пин кода, можно узнать и весть ключ, для этого достаточно 10 тысяч попыток . Таким образом, можно получить и пароль, каким бы сложным он не был.

На вход через WPS, в секунду можно отправлять по 10-50 запросов, и через часов 4-16 Вы получите долгожданный ключик.

Конечно, всему приходит конец, данная уязвимость была раскрыта и уже в будущих технологиях стали внедрять ограничения на число попыток входа, после истечения этого периода, точка доступа временно отключает WPS. На сегодняшний момент более половины пользователей все еще имеют устройства без данной защиты.

Если Вы хотите защитить свой пароль, то рекомендуется отключить WPS, делается это обычно в админ-панели. Если Вы иногда пользуетесь WPS, то включайте его только тогда, когда подключаетесь к сети, в остальное время выключайте.

Вот таким образом мы с Вами узнали о различных типах шифрования Wi-Fi сети, какие из них лучше, а какие хуже. Лучше, конечно же, использовать шифрование начиная с WPA, но WPA2 намного лучше.

По каким-то вопросам или есть, что добавить, обязательно отпишитесь в комментариях.

А тем временем, Вы можете посмотреть видео о том, как усилить Wi-Fi соединение , а также усилить USB-модем .

Доброго времени суток, дорогие друзья, знакомые и прочие личности. Сегодня поговорим про WiFi шифрование , что логично из заголовка.

Думаю, что многие из Вас пользуются такой штукой как , а значит, скорее всего, еще и Wi-Fi на них для Ваших ноутбуков, планшетов и прочих мобильных устройств.

Само собой, что этот самый вай-фай должен быть закрыт паролем, иначе вредные соседи будут безвозмездно пользоваться Вашим интернетом, а то и того хуже, - Вашим компьютером:)

Само собой, что помимо пароля есть еще и всякие разные типы шифрования этого самого пароля, точнее говоря, Вашего Wi-Fi протокола, чтобы им не просто не пользовались, но и не могли взломать.

В общем, сегодня хотелось бы немного поговорить с Вами о такой вещи как WiFi шифрование, а точнее этих самых WPE, WPA, WPA2, WPS и иже с ними.

Готовы? Давайте приступим.

WiFi шифрование - общая информация

Для начала сильно упрощенно поговорим о том как выглядит аутентификация с роутером (сервером), т.е как выглядит процесс шифрования и обмена данными. Вот такая вот у нас получается картинка:

Т.е, сначала, будучи клиентом мы говорим, что мы, - это мы, т.е знаем пароль (стрелочка зелененькая сверху). Сервер, тобишь допустим роутер, радуется и отдаёт нам случайную строку (она же является ключом с помощью которого мы шифруем данные), ну и далее происходит обмен данными, зашифрованными этим самым ключом.

Теперь же поговорим о типах шифрования, их уязвимостях и прочем прочем. Начнем по порядку, а именно с OPEN , т.е с отсутствия всякого шифра, а далее перейдем ко всему остальному.

Тип 1 - OPEN

Как Вы уже поняли (и я говорил только что), собственно, OPEN - это отсутствие всякой защиты, т.е. Wifi шифрование отсутствует как класс, и Вы и Ваш роутер абсолютно не занимаются защитой канала и передаваемых данных.

Именно по такому принципу работают проводные сети - в них нет встроенной защиты и «врезавшись» в неё или просто подключившись к хабу/свичу/роутеру сетевой адаптер будет получать пакеты всех находящихся в этом сегменте сети устройств в открытом виде.

Однако с беспроводной сетью «врезаться» можно из любого места - 10-20-50 метров и больше, причём расстояние зависит не только от мощности вашего передатчика, но и от длины антенны хакера. Поэтому открытая передача данных по беспроводной сети гораздо более опасна, ибо фактически Ваш канал доступен всем и каждому.

Тип 2 - WEP (Wired Equivalent Privacy)

Один из самых первых типов Wifi шифрования это WEP . Вышел еще в конце 90 -х и является, на данный момент, одним из самых слабых типов шифрования.

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

Во многих современных роутерах этот тип шифрования вовсе исключен из списка возможных для выбора:

Его нужно избегать почти так же, как и открытых сетей - безопасность он обеспечивает только на короткое время, спустя которое любую передачу можно полностью раскрыть вне зависимости от сложности пароля.

Ситуация усугубляется тем, что пароли в WEP - это либо 40 , либо 104 бита, что есть крайне короткая комбинация и подобрать её можно за секунды (это без учёта ошибок в самом шифровании).

Основная проблема WEP - в фундаментальной ошибке проектирования. WEP фактически передаёт несколько байт этого самого ключа вместе с каждым пакетом данных.

Таким образом, вне зависимости от сложности ключа раскрыть любую передачу можно просто имея достаточное число перехваченных пакетов (несколько десятков тысяч, что довольно мало для активно использующейся сети).

Тип 3 - WPA и WPA2 (Wi-Fi Protected Access)

Это одни из самых современных на данный момент типов такой штуки, как Wifi шифрование и новых пока, по сути, почти не придумали.

Собственно, поколение этих типов шифрования пришло на смену многострадальному WEP . Длина пароля - произвольная, от 8 до 63 байт, что сильно затрудняет его подбор (сравните с 3, 6 и 15 байтами в WEP ).

Стандарт поддерживает различные алгоритмы шифрования передаваемых данных после рукопожатия: TKIP и CCMP .

Первый - нечто вроде мостика между WEP и WPA , который был придуман на то время, пока IEEE были заняты созданием полноценного алгоритма CCMP . TKIP так же, как и WEP , страдает от некоторых типов атак, и в целом не сильно безопасен.

Сейчас используется редко (хотя почему вообще ещё применяется - мне не понятно) и в целом использование WPA с TKIP почти то же, что и использование простого WEP .

Кроме разных алгоритмов шифрования, WPA (2) поддерживают два разных режима начальной аутентификации (проверки пароля для доступа клиента к сети) - PSK и Enterprise . PSK (иногда его называют WPA Personal ) - вход по единому паролю, который вводит клиент при подключении.

Это просто и удобно, но в случае больших компаний может быть проблемой - допустим, у вас ушёл сотрудник и чтобы он не мог больше получить доступ к сети приходится менять пароль для всей сети и уведомлять об этом других сотрудников. Enterprise снимает эту проблему благодаря наличию множества ключей, хранящихся на отдельном сервере - RADIUS .

Кроме того, Enterprise стандартизирует сам процесс аутентификации в протоколе EAP (E xtensible A uthentication P rotocol), что позволяет написать собственный алгоритм.

Тип 4 - WPS/QSS

Wifi шифрование WPS , он же QSS - интересная технология, которая позволяет нам вообще не думать о пароле, а просто нажать на кнопку и тут же подключиться к сети. По сути это «легальный» метод обхода защиты по паролю вообще, но удивительно то, что он получил широкое распространение при очень серьёзном просчёте в самой системе допуска - это спустя годы после печального опыта с WEP .

WPS позволяет клиенту подключиться к точке доступа по 8-символьному коду, состоящему из цифр (PIN ). Однако из-за ошибки в стандарте нужно угадать лишь 4 из них. Таким образом, достаточно всего-навсего 10000 попыток подбора и вне зависимости от сложности пароля для доступа к беспроводной сети вы автоматически получаете этот доступ, а с ним в придачу - и этот самый пароль как он есть.

Учитывая, что это взаимодействие происходит до любых проверок безопасности, в секунду можно отправлять по 10-50 запросов на вход через WPS , и через 3-15 часов (иногда больше, иногда меньше) вы получите ключи от рая.

Когда данная уязвимость была раскрыта производители стали внедрять ограничение на число попыток входа (rate limit ), после превышения которого точка доступа автоматически на какое-то время отключает WPS - однако до сих пор таких устройств не больше половины от уже выпущенных без этой защиты.

Даже больше - временное отключение кардинально ничего не меняет, так как при одной попытке входа в минуту нам понадобится всего 10000/60/24 = 6,94 дней. А PIN обычно отыскивается раньше, чем проходится весь цикл.

Хочу ещё раз обратить ваше внимание, что при включенном WPS ваш пароль будет неминуемо раскрыт вне зависимости от своей сложности. Поэтому если вам вообще нужен WPS - включайте его только когда производится подключение к сети, а в остальное время держите выключенным.

Послесловие

Выводы, собственно, можете сделать сами, а вообще, само собой разумеется, что стоит использовать как минимум WPA , а лучше WPA2 .

В следующем материале по Wi-Fi мы поговорим о том как влияют различные типы шифрования на производительность канала и роутера, а так же рассмотрим некоторые другие нюансы.

Как и всегда, если есть какие-то вопросы, дополнения и всё такое прочее, то добро пожаловать в комментарии к теме про Wifi шифрование .

PS : За существование этого материала спасибо автору Хабра под ником ProgerXP . По сути вся текстовка взята из его материала , чтобы не изобретать велосипед своими словами.

Сегодня мы чуть глубже копнем тему защиты беспроводного соединения. Разберемся, что такое — его еще называют «аутентификацией» — и какой лучше выбрать. Наверняка при вам попадались на глаза такие аббревиатуры, как WEP, WPA, WPA2, WPA2/PSK. А также их некоторые разновидности — Personal или Enterprice и TKIP или AES. Что ж, давайте более подробно изучим их все и разберемся, какой тип шифрования выбрать для обеспечения максимальной без потери скорости.

Отмечу, что защищать свой WiFi паролем нужно обязательно, не важно, какой тип шифрования вы при этом выберете. Даже самая простая аутентификация позволит избежать в будущем довольно серьезных проблем.

Почему я так говорю? Тут даже дело не в том, что подключение множества левых клиентов будет тормозить вашу сеть — это только цветочки. Главная причина в том, что если ваша сеть незапаролена, то к ней может присосаться злоумышленник, который из-под вашего роутера будет производить противоправные действия, а потом за его действия придется отвечать вам, так что отнеситесь к защите wifi со всей серьезностью.

Шифрование WiFi данных и типы аутентификации

Итак, в необходимости шифрования сети wifi мы убедились, теперь посмотрим, какие бывают типы:

Что такое WEP защита wifi?

WEP (Wired Equivalent Privacy) — это самый первый появившийся стандарт, который по надежности уже не отвечает современным требованиям. Все программы, настроенные на взлом сети wifi методом перебора символов, направлены в большей степени именно на подбор WEP-ключа шифрования.

Что такое ключ WPA или пароль?

WPA (Wi-Fi Protected Access) — более современный стандарт аутентификации, который позволяет достаточно надежно оградить локальную сеть и интернет от нелегального проникновения.

Что такое WPA2-PSK — Personal или Enterprise?

WPA2 — усовершенствованный вариант предыдущего типа. Взлом WPA2 практически невозможен, он обеспечивает максимальную степень безопасности, поэтому в своих статьях я всегда без объяснений говорю о том, что нужно устанавливать именно его — теперь вы знаете, почему.

У стандартов защиты WiFi WPA2 и WPA есть еще две разновидности:

  • Personal , обозначается как WPA/PSK или WPA2/PSK. Этот вид самый широко используемый и оптимальный для применения в большинстве случаев — и дома, и в офисе. В WPA2/PSK мы задаем пароль из не менее, чем 8 символов, который хранится в памяти того устройства, которые мы подключаем к роутеру.
  • Enterprise — более сложная конфигурация, которая требует включенной функции RADIUS на роутере. Работает она по принципу , то есть для каждого отдельного подключаемого гаджета назначается отдельный пароль.

Типы шифрования WPA — TKIP или AES?

Итак, мы определились, что оптимальным выбором для обеспечения безопасности сети будет WPA2/PSK (Personal), однако у него есть еще два типа шифрования данных для аутентификации.

  • TKIP — сегодня это уже устаревший тип, однако он все еще широко употребляется, поскольку многие девайсы энное количество лет выпуска поддерживают только его. Не работает с технологией WPA2/PSK и не поддерживает WiFi стандарта 802.11n.
  • AES — последний на данный момент и самый надежный тип шифрования WiFi.

Какой выбрать тип шифрования и поставить ключ WPA на WiFi роутере?

С теорией разобрались — переходим к практике. Поскольку стандартами WiFi 802.11 «B» и «G», у которых максимальная скорость до 54 мбит/с, уже давно никто не пользуется — сегодня нормой является 802.11 «N» или «AC», которые поддерживают скорость до 300 мбит/с и выше, то рассматривать вариант использования защиты WPA/PSK с типом шифрования TKIP нет смысла. Поэтому когда вы настраиваете беспроводную сеть, то выставляйте по умолчанию

WPA2/PSK — AES

Либо, на крайний случай, в качестве типа шифрования указывайте «Авто», чтобы предусмотреть все-таки подключение устройств с устаревшим WiFi модулем.

При этом ключ WPA, или попросту говоря, пароль для подключения к сети, должен иметь от 8 до 32 символов, включая английские строчные и заглавные буквы, а также различные спецсимволы.

Защита беспроводного режима на маршрутизаторе TP-Link

На приведенных выше скринах показана панель управления современным роутером TP-Link в новой версии прошивки. Настройка шифрования сети здесь находится в разделе «Дополнительные настройки — Беспроводной режим».

В старой «зеленой» версии интересующие нас конфигурации WiFi сети расположены в меню «Беспроводной режим — Защита «. Сделаете все, как на изображении — будет супер!

Если заметили, здесь еще есть такой пункт, как «Период обновления группового ключа WPA». Дело в том, что для обеспечения большей защиты реальный цифровой ключ WPA для шифрования подключения динамически меняется. Здесь задается значение в секундах, после которого происходит смена. Я рекомендую не трогать его и оставлять по умолчанию — в разных моделях интервал обновления отличается.

Метод проверки подлинности на роутере ASUS

На маршрутизаторах ASUS все параметры WiFi расположены на одной странице «Беспроводная сеть»

Защита сети через руотер Zyxel Keenetic

Аналогично и у Zyxel Keenetic — раздел «Сеть WiFi — Точка доступа»

В роутерах Keenetic без приставки «Zyxel» смена типа шифрования производится в разделе «Домашняя сеть».

Настройка безопасности роутера D-Link

На D-Link ищем раздел «Wi-Fi — Безопасность »

Что ж, сегодня мы разобрались типами шифрования WiFi и с такими терминами, как WEP, WPA, WPA2-PSK, TKIP и AES и узнали, какой из них лучше выбрать. О других возможностях обеспечения безопасности сети читайте также в одной из прошлых статей, в которых я рассказываю о по MAC и IP адресам и других способах защиты.

Видео по настройке типа шифрования на маршрутизаторе

    Перед чтением данного материала, рекомендуется ознакомится с предыдущими статьями цикла:
  • Строим сеть своими руками и подключаем ее к Интернет, часть первая - построение проводной Ethernet сети (без коммутатора, в случае двух компьютеров и с коммутатором, а также при наличии трех и более машин) и организация доступа в Интернет через один из компьютеров сети, на котором имеются две сетевые карты и установлена операционная система Windows XP Pro.
  • Часть вторая: настройка беспроводного оборудования в одноранговой сети - рассматриваются вопросы организации сети, при использовании только беспроводных адаптеров.

В предыдущей статье шифрованию в беспроводных сетях было посвящено всего несколько слов - было обещано осветить этот вопрос в отдельной статье. Сегодня мы выполняем свое обязательство:)

Для начала - немного теории.

Шифрованию данных в беспроводных сетях уделяется так много внимания из-за самого характера подобных сетей. Данные передаются беспроводным способом, используя радиоволны, причем в общем случае используются всенаправленные антенны. Таким образом, данные слышат все - не только тот, кому они предназначены, но и сосед, живущий за стенкой или «интересующийся», остановившийся с ноутбуком под окном. Конечно, расстояния, на которых работают беспроводные сети (без усилителей или направленных антенн), невелики - около 100 метров в идеальных условиях. Стены, деревья и другие препятствия сильно гасят сигнал, но это все равно не решает проблему.

Изначально для защиты использовался лишь SSID (имя сети). Но, вообще говоря, именно защитой такой способ можно называть с большой натяжкой - SSID передается в открытом виде и никто не мешает злоумышленнику его подслушать, а потом подставить в своих настройках нужный. Не говоря о том, что (это касается точек доступа) может быть включен широковещательный режим для SSID, т.е. он будет принудительно рассылаться в эфир для всех слушающих.

Поэтому возникла потребность именно в шифровании данных. Первым таким стандартом стал WEP - Wired Equivalent Privacy. Шифрование осуществляется с помощью 40 или 104-битного ключа (поточное шифрование с использованием алгоритма RC4 на статическом ключе). А сам ключ представляет собой набор ASCII-символов длиной 5 (для 40-битного) или 13 (для 104-битного ключа) символов. Набор этих символов переводится в последовательность шестнадцатеричных цифр, которые и являются ключом. Драйвера многих производителей позволяют вводить вместо набора ASCII-символов напрямую шестнадцатеричные значения (той же длины). Обращаю внимание, что алгоритмы перевода из ASCII-последовательности символов в шестнадцатеричные значения ключа могут различаться у разных производителей. Поэтому, если в сети используется разнородное беспроводное оборудование и никак не удается настройка WEP шифрования с использованием ключа-ASCII-фразы, - попробуйте ввести вместо нее ключ в шестнадцатеричном представлении.

А как же заявления производителей о поддержке 64 и 128-битного шифрования, спросите вы? Все правильно, тут свою роль играет маркетинг - 64 больше 40, а 128 - 104. Реально шифрование данных происходит с использованием ключа длиной 40 или 104. Но кроме ASCII-фразы (статической составляющей ключа) есть еще такое понятие, как Initialization Vector - IV - вектор инициализации. Он служит для рандомизации оставшейся части ключа. Вектор выбирается случайным образом и динамически меняется во время работы. В принципе, это разумное решение, так как позволяет ввести случайную составляющую в ключ. Длина вектора равна 24 битам, поэтому общая длина ключа в результате получается равной 64 (40+24) или 128 (104+24) бит.

Все бы хорошо, но используемый алгоритм шифрования (RC4) в настоящее время не является особенно стойким - при большом желании, за относительно небольшое время можно подобрать ключ перебором. Но все же главная уязвимость WEP связана как раз с вектором инициализации. Длина IV составляет всего 24 бита. Это дает нам примерно 16 миллионов комбинаций - 16 миллионов различных векторов. Хотя цифра «16 миллионов» звучит довольно внушительно, но в мире все относительно. В реальной работе все возможные варианты ключей будут использованы за промежуток от десяти минут до нескольких часов (для 40-битного ключа). После этого вектора начнут повторяться. Злоумышленнику стоит лишь набрать достаточное количество пакетов, просто прослушав трафик беспроводной сети, и найти эти повторы. После этого подбор статической составляющей ключа (ASCII-фразы) не занимает много времени.

Но это еще не все. Существуют так называемые «нестойкие» вектора инициализации. Использование подобных векторов в ключе дает возможность злоумышленнику практически сразу приступить к подбору статической части ключа, а не ждать несколько часов, пассивно накапливая трафик сети. Многие производители встраивают в софт (или аппаратную часть беспроводных устройств) проверку на подобные вектора, и, если подобные попадаются, они молча отбрасываются, т.е. не участвуют в процессе шифрования. К сожалению, далеко не все устройства обладают подобной функцией.

В настоящее время некоторые производители беспроводного оборудования предлагают «расширенные варианты» алгоритма WEP - в них используются ключи длиной более 128 (точнее 104) бит. Но в этих алгоритмах увеличивается лишь статическая составляющая ключа. Длина инициализационного вектора остается той же самой, со всеми вытекающими отсюда последствиями (другими словами, мы лишь увеличиваем время на подбор статического ключа). Само собой разумеется, что алгоритмы WEP с увеличенной длиной ключа у разных производителей могут быть не совместимы.

Хорошо напугал? ;-)

К сожалению, при использовании протокола 802.11b ничего кроме WEP выбрать не удастся. Точнее, некоторые (меньшинство) производители поставляют различные реализации WPA шифрования (софтовыми методами), которое гораздо более устойчиво, чем WEP. Но эти «заплатки» бывают несовместимы даже в пределах оборудования одного производителя. В общем, при использовании оборудования стандарта 802.11b, есть всего три способа зашифровать свой трафик:

  • 1. Использование WEP с максимальной длиной ключа (128 бит или выше), если оборудование поддерживает циклическую смену ключей из списка (в списке - до четырех ключей), желательно эту смену активировать.
  • 2. Использование стандарта 802.1x
  • 3. Использование стороннего программного обеспечения для организации VPN туннелей (шифрованных потоков данных) по беспроводной сети. Для этого на одной из машин ставится VPN сервер (обычно с поддержкой pptp), на других - настраиваются VPN клиенты. Эта тема требует отдельного рассмотрения и выходит за рамки этой статьи.

802.1x использует связку из некоторых протоколов для своей работы:

  • EAP (Extensible Authentication Protocol) - протокол расширенной аутентификации пользователей или удаленных устройств;
  • TLS (Transport Layer Security) - протокол защиты транспортного уровня, он обеспечивает целостность передачи данных между сервером и клиентом, а так же их взаимную аутентификацию;
  • RADIUS (Remote Authentication Dial-In User Server) - сервер аутентификации (проверки подлинности) удаленных клиентов. Он и обеспечивает аутентификацию пользователей.

Протокол 802.1x обеспечивает аутентификацию удаленных клиентов и выдачу им временных ключей для шифрования данных. Ключи (в зашифрованном виде) высылаются клиенту на незначительный промежуток времени, после которого генерируется и высылается новый ключ. Алгоритм шифрования не изменился - тот же RC4, но частая ротация ключей очень сильно затрудняет вероятность взлома. Поддержка этого протокола есть только в операционных системах (от Microsoft) Windows XP. Его большой минус (для конечного пользователя) в том, что протокол требует наличие RADIUS-сервера, которого в домашней сети, скорее всего, не будет.

Устройства, поддерживающие стандарт 802.11g, поддерживают улучшенный алгоритм шифрования WPA - Wi-Fi Protected Access. По большому счету это временный стандарт, призванный заполнить нишу безопасности до прихода протокола IEEE 802.11i (так называемого WPA2). WPA включает в себя 802.1X, EAP, TKIP и MIC.

Из нерассмотренных протоколов тут фигурируют TKIP и MIC:

  • TKIP (Temporal Key Integrity Protocol) - реализация динамических ключей шифрования, плюс к этому, каждое устройство в сети так же получает свой Master-ключ (который тоже время от времени меняется). Ключи шифрования имеют длину 128 бит и генерируются по сложному алгоритму, а общее кол-во возможных вариантов ключей достигает сотни миллиардов, а меняются они очень часто. Тем не менее, используемый алгоритм шифрования - по--прежнему RC4.
  • MIC (Message Integrity Check) - протокол проверки целостности пакетов. Протокол позволяет отбрасывать пакеты, которые были «вставлены» в канал третьим лицом, т.е. ушли не от валидного отправителя.

Большое число достоинств протокола TKIP не покрывает его основной недостаток- используемый для шифрования алгоритм RC4. Хотя на данный момент случаев взлома WPA на основе TKIP зарегистрировано не было, но кто знает, что преподнесет нам будущее? Поэтому сейчас все популярнее становится использование стандарта AES (Advanced Encryption Standard), который приходит на замену TKIP. К слову, в будущем стандарте WPA2 есть обязательное требование к использованию AES для шифрования.

Какие выводы можно сделать?

  • при наличии в сети только 802.11g устройств лучше пользоваться шифрованием на основе WPA;
  • по возможности (при поддержке всеми устройствами) включать AES шифрование;

Переходим к непосредственной настройке шифрования на устройствах. Я использую те же беспроводные адаптеры, что и в предыдущей статье:

Cardbus адаптер Asus WL-100g установлен на ноутбуке. Интерфейс управления картой - утилита от ASUS (ASUS WLAN Control Center).

Внешний адаптер с USB-интерфейсом ASUS WL-140 . Управление адаптером - через встроенный в Windows XP интерфейс (Zero Wireless Configuration). Эта карта стандарта 802.11b, поэтому поддержки WPA не имеет.

Плата с PCI интерфейсом Asus WL-130g . Интерфейс управления в реализации от (производитель чипсета данной PCI карты).

ASUS WLAN Control Center - ASUS WL-100g

Начнем с настройки шифрования в интерфейсе управления ASUS WLAN Control Center. Все настройки сосредоточены в разделе Encryption . Сначала выберем тип аутентификации (Network Authentication ), нам доступны три типа: Open System, Shared Key и WPA.

1. WEP-шифрование.

Типы Open System/Shared Key (Открытая система/Общий ключ) являются подмножествами алгоритма аутентификации, встроенного в WEP. Режим Open System является небезопасным, и его категорически не рекомендуется включать при возможности активации Shared Key. Это связано с тем, что в режиме Open System для входа в беспроводную сеть (ассоциации с другой станцией или точкой доступа) достаточно знать лишь SSID сети, а в режиме Shared Key - нужно еще установить общий для всей сети WEP-ключ шифрования.

Далее выбираем шифрование (Encryption) - WEP, размер ключа - 128 бит (64-битный ключ лучше не использовать вовсе). Выбираем формат ключа, HEX (ввод ключа в шестнадцатеричном виде) или генерация ключа из ASCII последовательности (не забываем, что алгоритмы генерации могут различаться у производителей). Так же учитываем, что WEP-ключ (или ключи) должны быть одинаковы на всех устройствах в одной сети. Всего можно ввести до четырех ключей. Последним пунктом выбираем, какой из ключей будет использоваться (Default Key). В данном случае есть еще один способ - запустить использовать все четыре ключа последовательно, что повышает безопасность. (совместимость только у устройств одного и того же производителя).

2. WPA-шифрование.

При поддержке на всех устройствах (обычно это 802.11g устройства) настоятельно рекомендуется использовать этот режим, вместо устаревшего и уязвимого WEP.

Обычно беспроводные устройства поддерживают два режима WPA:

  • Стандартный WPA. Нам он не подходит, так как требует наличие RADIUS сервера в сети (к тому же работает лишь в связке с точкой доступа).
  • WPA-PSK - WPA с поддержкой Pre Shared Keys (заранее заданных ключей). А это то, что нужно - ключ (одинаковый для всех устройств) вручную задается на всех беспроводных адаптерах и первичная аутентификация станций осуществляется через него.

В качестве алгоритмов шифрования можно выбрать TKIP или AES. Последний реализован не на всех беспроводных клиентах, но если он поддерживается всеми станциями, то лучше остановиться именно на нем. Wireless Network Key - это тот самый общий Pre Shared Key. Желательно сделать его длиннее и не использовать слово из словаря или набор слов. В идеале это должна быть какая-нибудь абракадабра.

После нажатия на кнопку Apply (или Ok), заданные настройки будут применены к беспроводной карте. На этом процедуру настройки шифрования на ней можно считать законченной.

Интерфейс управления в реализации от Ralink - Asus WL-130g

Настройка не очень отличается от уже рассмотренного интерфейса от ASUS WLAN CC. В окне открывшегося интерфейса идем на закладку Profile , выбираем нужный профиль и жмем Edit .

1. WEP шифрование.

Настройка шифрования осуществляется в закладке Authentication and Security . В случае активации WEP шифрования, выбираем Shared в Authentication type (т.е. общий ключ).

Выбираем тип шифрования - WEP и вводим до четырех ASCII или шестнадцатеричных ключей. Длину ключа в интерфейсе задать нельзя, сразу используется 128-битный ключ.

2. WPA шифрование.

Если в Authentication type выбрать WPA-None, то мы активируем WPA-шифрование с общим ключом. Выбираем тип шифрования (Encryption ) TKIP или AES и вводим общий ключ (WPA Pre-Shared Key ).

На этом и заканчивается настройка шифрования в данном интерфейсе. Для сохранения настроек в профиле достаточно нажать кнопку Ok .

Zero Wireless Configuration (встроенный в Windows интерфейс) - ASUS WL-140

ASUS WL-140 является картой стандарта 802.11b, поэтому поддерживает только WEP шифрование.

1. WEP шифрование.

В настройках беспроводного адаптера переходим на закладку Беспроводные сети . Далее выбираем нашу беспроводную сеть и жмем кнопку Настроить .

В появившемся окне активируем Шифрование данных . Также активируем Проверку подлинности сети , отключение этого пункта приведет к включению аутентификации типа «Open System», т.е. любой клиент сможет подключиться к сети, зная ее SSID.

Вводим ключ сети (и повторно его же в следующем поле). Проверяем его индекс (порядковый номер), обычно он равен единице (т.е. первый ключ). Номер ключа должен быть одинаков на всех устройствах.

Ключ (сетевой пароль), как нам подсказывает операционная система, должен содержать 5 или 13 символов или быть полностью введен в шестнадцатеричном виде. Еще раз обращаю внимание, что алгоритм перевода ключа из символьного вида в шестнадцатеричной может отличаться у Microsoft и производителей собственных интерфейсов к управлению беспроводными адаптерами, поэтому надежнее будет ввести ключ в шестнадцатеричном виде (т.е. цифрами от 0 до 9 и буквами от A до F).

В интерфейсе есть еще флаг, отвечающий за Автоматическое предоставление ключа , но я точно не знаю, где это будет работать. В разделе помощи сказано, что ключ может быть зашит в беспроводной адаптер производителем оного. В общем, лучше не активировать эту функцию.

На этом настройку шифрования для 802.11b адаптера можно считать законченной.

Кстати, о встроенной в ОС помощи. Большинство из сказанного здесь и даже более того можно найти в Центре справки и поддержки , которая обладает хорошей системой помощи, достаточно лишь ввести ключевые слова и нажать на зеленую стрелку поиска.

2. WPA шифрование.

Рассмотрев настройку шифрования на примере 802.11b адаптера ASUS WL-140, мы не коснулись настройки WPA в Windows, так как карта не поддерживает этот режим. Рассмотрим этот аспект на примере другого адаптера - ASUS WL-100g. Возможность настройки WPA в Windows XP появляется с установкой Service Pack версии 2 (или же соответствующими обновлениями, лежащими на сайте Microsoft).

Service Pack 2 сильно расширяет функции и удобство настроек беспроводной сети. Хотя основные элементы меню не изменились, но к ним добавились новые.

Настройка шифрования производится стандартным образом: сначала выбираем значок беспроводного адаптера, далее жмем кнопку Свойства .

Переходим на закладку Беспроводные сети и выбираем, какую сеть будем настраивать (обычно она одна). Жмем Свойства .

В появившемся окне выбираем WPA-None, т.е. WPA с заранее заданными ключами (если выбрать Совместимая , то мы включим режим настройки WEP шифрования, который уже был описан выше).

Выбираем AES или TKIP (если все устройства в сети поддерживают AES, то лучше выбрать его) и вводим два раза (второй в поле подтверждения) WPA-ключ. Желательно какой-нибудь длинный и трудноподбираемый.

После нажатия на Ok настройку WPA шифрования также можно считать законченной.

В заключении пару слов о появившемся с Service Pack 2 мастере настройки беспроводной сети.

В свойствах сетевого адаптера выбираем кнопку Беспроводные сети .

В появившемся окне - жмем на Установить беспроводную сеть .

Тут нам рассказывают, куда мы попали. Жмем Далее .

Выбираем Установить беспроводную сеть . (Если выбрать Добавить , то можно создать профили для других компьютеров в той же беспроводной сети).

В появившемся окне устанавливаем SSID сети, активируем, если возможно, WPA шифрование и выбираем способ ввода ключа. Генерацию можно предоставить операционной системе или ввести ключи вручную. Если выбрано первое, то далее выскочит окошко с предложением ввести нужный ключ (или ключи).

  • В текстовом файле, для последующего ручного ввода на остальных машинах.
  • Сохранение профиля на USB-флешке, для автоматического ввода на других машинах с Windows XP с интегрированным Service Pack версии 2.

Если выбран режим сохранения на Flash, то в следующем окне предложат вставить Flash-носитель и выбрать его в меню.

Если было выбрано ручное сохранение параметров, то после нажатия кнопки Напечатать

… будет выведен текстовый файл с параметрами настроенной сети. Обращаю внимание, что генерируется случайный и длинные (т.е. хороший) ключи, но в качестве алгоритма шифрования используется TKIP. Алгоритм AES можно позже включить вручную в настройках, как было описано выше.

Итого

Мы закончили настройку шифрования на всех адаптерах беспроводной сети. Теперь можно проверить видят ли компьютеры друг друга. Как это сделать, рассказывалось во второй части цикла «сети своими руками» (действуем аналогично способу, когда шифрование в сети не было включено).

Если нас постигла неприятность, и не все компьютеры видят друг друга, то проверяем общие настройки у адаптеров:

  • Алгоритм аутентификации должен быть одинаков у всех (Shared Keys или WPA);
  • Алгоритм шифрования должен быть одинаков у всех (WEP-128bit, WPA-TKIP или WPA-AES);
  • Длина ключа (в случае WEP-шифрования) должна быть одинаковой у всех станций в сети (обычная длина - 128bit);
  • Сам ключ должен быть одинаковым на всех станциях сети. Если используется WEP, то возможная причина - использование ASCII-ключа и в сети используется разнородное оборудование (от разных производителей). Попробуйте ввести ключ в шестнадцатеричном представлении.