Схема включения транзистора с об. Биполярные транзисторы: схемы включения

При любом включении транзистора в схему, через один из его выводов, будет течь входной и выходной ток, этот вывод называют общим.

Существуют три схемы включения биполярного транзистора:

Начнём со схемы, с общим эмиттером. Схема с общим эмиттером обладает следующими свойствами:
  • большим коэффициентом усиления по току;




Во всех осциллограммах в статье первый канал - входной сигнал, второй канал - выходной сигнал. Входной сигнал берется после разделительного конденсатора, иначе конденсатор вносит сдвиг фазы.
На осциллограмме видно, что амплитуда выходного сигнала в несколько раз превышает амплитуду входного, при этом сигнал на выходе инвертирован относительно входного сигнала, это значит, что когда сигнал входе возрастает на выходе он убывает и наоборот. На схеме пунктирной линией изображен конденсатор, его можно подключить если надо увеличить коэффициент усиления. Давайте подключим его.


Видим, что выходной сигнал увеличился примерно на порядок, то есть в 10 раз. Такая схема включения транзистора применяется, в усилителях мощности.
При включении конденсатора входное сопротивление схемы уменьшилось, что привело к искажениям сигнала генератора, а следовательно и выходного сигнала.

Схема с общим коллектором.

  • входной сигнал подаётся на базу;
  • выходной сигнал снимается с эмиттера;
Схема с общим коллектором обладает следующими свойствами:
  • большим коэффициент усиления по току;
  • напряжения входного и выходного сигнала отличаются примерно на 0,6 V;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуды сигналов равны потому, что осциллограф отображает только переменную составляющую, если включить осциллограф на отображение постоянной составляющей, то разница между сигналом на входе и выходе составит 0,6 V. Схема сигнал не инвертирует и применяется в качестве буфера или для согласования каскадов.
Под буфером в электронике понимается схема, которая увеличивает нагрузочную способность сигнала, то есть сигнал остается такой же формы, но способен выдать больший ток.

Схема с общей базой.

  • входной сигнал подаётся на эмиттер;
  • выходной сигнал снимается с коллектора;
Схема с общей базой обладает следующими свойствами:
  • большим коэффициентом усиления по напряжению;
  • близким к нулю усилением по току, ток эмиттера больше тока коллектора на ток базы;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуда выходного сигнала примерно в десять раз превышает амплитуду входного сигнала, также сигнал на выходе не инвертирован относительно входного сигнала. Применяется такая схема включения транзистора в радиочастотных усилителях. Каскад с общей базой обладает низким входным сопротивлением, поэтому сигнал генератора искажается, следовательно и выходной сигнал тоже.
Возникает вопрос, почему не использовать для усиления радиочастот схему с общим эмиттером ведь она увеличивает амплитуду сигнала? Все дело в ёмкости перехода база-коллектор, её ещё называют ёмкостью Миллера. Для радиочастот эта ёмкость обладает малым сопротивлением, таким образом, сигнал вместо того, чтобы течь через переход база-эмиттер проходит через эту ёмкость и через открытый транзистор стекает на землю. Как это происходит показано на рисунке ниже.


Пожалуй, это всё, что хотелось рассказать про схемы включения транзистора.

Схема с общим эмиттером

Схема с общим эмиттером (ОЭ) представлена на рис. 1.11. Транзистор п-р-п в этой схеме работает так же, как и в схеме с ОБ. Заметим лишь, что общепринятое направление токов (от К источника напряжения), обозначенное на рис. 1.11, а, противоположно направлению движения электронов. Характерным признаком схемы с ОЭ является то, что нагрузка располагается в коллекторной цепи (рис. 1.11,6).

Рис. 1.11. Схема включения транзистора с общим эмиттером (а); типовое изображение в схемах (б)

Так же как и для схемы с ОБ, входным сигналом в этой схеме является напряжение между базой и эмиттером, а выходными величинами – коллекторный ток I к и напряжение на нагрузке U вых = I к R н Транзистор в схеме с ОЭ характеризуется коэффициентом передачи тока

имеющим значения β = 10... 100, который связан с коэффициентом α для схемы с ОБ соотношением:

Оценим значения коэффициентов усиления схемы с ОЭ (их обозначают индексом "Э").

Выходным током, как и в схеме с ОБ, является ток I к, протекающий но нагрузке, а входным током (в отличие от схемы с ОБ) – ток базы I Б; коэффициент усиления по току схемы с ОЭ равен

При α = 0,98 КIЭ = 0,98/(1 – 0,98) ≈ 50, т.е. нескольким десяткам, что многократно превосходит аналогичный коэффициент у схемы с ОБ.

Входное сопротивление в схеме с ОЭ также значительно выше, чем в схеме с ОБ, так как в схеме с ОЭ входным током является ток базы, а в схеме с ОБ – во много раз больший ток эмиттера (а именно в 1/(1 – α) ≈ β раз):

Величина входного сопротивления в схеме с ОЭ больше, чем в схеме с ОБ в ≈ β раз и составляет сотни ом.

Коэффициент усиления по напряжению в схеме с ОЭ соизмерим с таким же коэффициентом у схемы с ОБ:

По коэффициенту усиления по мощности схема с ОЭ за счет значительно большего коэффициента усиления по току также многократно превосходит схему с ОБ:

и зависит от коэффициента передачи тока β и отношения сопротивления нагрузки к входному сопротивлению.

Благодаря отмеченным свойствам, схема с ОЭ нашла очень широкое применение.

Входные и выходные характеристики схемы с общим эмиттером

Работу схемы обычно описывают с помощью входных и выходных характеристик транзистора в той или иной схеме включения. Для схемы с ОЭ входная характеристика – это зависимость входного тока от напряжения на входе схемы, т.е. I Б = f (UБЭ) при фиксированных значениях напряжения коллектор – эмиттер (U кэ = const).

Выходные характеристики – это зависимости выходного тока, т.е. тока коллектора, от падения напряжения между коллектором и эмиттером транзистора I к = f (и БЭ) при токе базы I Б = const.

Входная характеристика по существу повторяет вид характеристики диода при подаче прямого напряжения (рис. 1.12, б). С ростом напряжения U KЭ входная характеристика будет незначительно смещаться вправо.

Рис. 1.12. Выходные (а) и входная (б ) характеристики транзистора в схеме с общим эмиттером

Вид выходных характеристик (рис. 1.12, а) резко различен в области малых (участок ОA) и относительно больших значений U кэ. Напомним, что для нормальной работы транзистора необходимо, чтобы на переход база–эмиттер подавалось прямое напряжение, а на переход база–коллектор – обратное. Поэтому, пока |1/кэ|< 1/БЭ, напряжение на коллекторном переходе оказывается прямым, что резко уменьшает ток I к. При |UКЭ| > U БЭ напряжение на коллекторном переходе UБK = UКЭ – U БЭ становится обратным и, следовательно, мало влияет на величину коллекторного тока, который определяется в основном током эмиттера. При таком напряжении все носители, инжектированные эмиттером в базу и прошедшие через область базы, устремляются к внешнему источнику. При напряжении UБЭ < 0 эмиттер носителей не инжектирует и ток базы I Б = 0, однако в коллекторной цепи протекает ток I К0 (самая нижняя выходная характеристика). Этот ток соответствует обратному току I 0 обычного р-n-перехода.

При работе транзистора изменяется его режим. Действительно, чем больше ток, протекающий через транзистор, тем больше падение напряжения на нагрузке, а следовательно, тем меньшее напряжение будет падать на самом транзисторе. Характеристики, представленные на рис. 1.12, а, б, описывают лишь статический режим работы схемы. Для оценки динамики и влияния нагрузки на работу схемы используют графоаналитический метод расчета на основе входных и выходных характеристик. Рассмотрим этот метод на примере входных и выходных характеристик схемы с ОЭ.

Проведем прямую через точку Eк, отложенную на оси абсцисс, и точку Е к /R н отложенную на оси ординат выходных характеристик транзистора. Полученная прямая называется нагрузочной. Точка Е к /R н этой прямой соответствует такому току, который мог бы течь через нагрузку, если транзистор замкнуть накоротко. Точка Е к соответствует другому крайнему случаю – цепь разомкнута, ток через нагрузку равен нулю, а напряжение Uкэ равно Е к. Точка р пересечения нагрузочной прямой со статической выходной характеристикой, соответствующей входному току I Б, определит рабочий режим схемы, т.е. ток в нагрузке I к, падение напряжения на ней U н = I к R н и падение напряжения (/кэ на самом транзисторе. На рис. 1.12, а точка р соответствует подаче в транзистор тока базы I Б = 1 мА. Нетрудно видеть, что подача тока базы I Б = 2 мА приводит к смещению рабочей точки в точку А и перераспределению напряжений между нагрузкой и транзистором.

Пример 1.1. Рассчитайте схему с ОЭ и R н =110 Ом при входном напряжении UБЭ = +0,1 В, напряжении питания Е к = +25 В, используя характеристики транзистора.

Решение. Найдем отношение E K/R н = 25/110 = 228 мА и, отложив найденную точку на оси I к и значение Е к = +25 В на оси Uкэ, проведем нагрузочную прямую.

По входной характеристике для напряжения 1/БЭ = 0,1 В определим входной ток I Б = 1 мЛ.

Точка пересечения р прямой с характеристикой, соответствующей I Б = 1 мА, определит ток I к = 150 мА.

Напряжение на нагрузке равно

Напряжение между коллектором и эмиттером транзистора

В заключение отметим, что режим, соответствующий точке А, называют режимом насыщения (при заданных значениях R н и Е к ток I к в точке А достигает наибольшего возможного значения). Режим, соответствующий точке В (входной сигнал равен нулю), а также точке С (входной сигнал отрицателен и запирает транзистор), называют режимом отсечки. Все промежуточные состояния транзистора с нагрузкой между точками А и В относятся к активному режиму его работы.

Сибирская государственная автомобильно-дорожная академия

Кафедра АПП и Э

КУРСОВОЙ ПРОЕКТ

“РАСЧЕТ ТРАНЗИСТОРНОГО УСИЛИТЕЛЯ

ПО СХЕМЕ С ОБЩИМ ЭМИТТЕРОМ”

по дисциплине: “Электротехника ”

Вариант-17

Выполнил: ст. гр. 31АП

Цигулев С.В.

Проверил: Денисов В.П.

1. Основные понятия

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

3. Задание на работу

4. Порядок расчета транзисторного усилителя по схеме с ОЭ

Библиографический список

1. Основные понятия

Усилители являются одним из самых распространенных электронных устройств, применяемых в системах автоматики и радиосхемах. Усилители подразделяются на усилители предварительные (усилители напряжения) и усилители мощности. Предварительные транзисторные усилители, как и ламповые, состоят из одного или нескольких каскадов усиления. При этом все каскады усилителя обладают общими свойствами, различие между ними может быть только количественное: разные токи, напряжения, различные значения резисторов, конденсаторов и т. п.

Для каскадов предварительного усилителя наиболее распространены резистивныесхемы (с реостатно-емкостной связью). В зависимости от способа подачи входного сигнала и получения выходного сигнала усилительные схемы получили следующие названия:

1) с общей базой ОБ (рис. 1, а);

2) с общим коллектором ОК (эмиттерный повторитель) (рис. 1, б);

3) с общим эмиттером - ОЭ (рис. 1, в).


Наиболее распространенной является схема с ОЭ. Схема с ОБ в предварительных усилителях встречается редко. Эмиттерный повторитель обладает наибольшим из всех трех схем входным и наименьший выходным сопротивлениями, поэтому его применяют при работе с высокоомными преобразователями в качестве первого каскада усилителя, а также для согласования с низкоомным нагрузочным резистором. В табл. 1 дается сопоставление различных схем включения транзисторов.


Таблица 1

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

Существует множество вариантов выполнения схемы усилительного каскада на транзисторе ОЭ. Это обусловлено главным образом особенностями задания режима покоя каскада. Особенности усилительных каскадов и рассмотрим на примере схемы рисунок 2, получившей наибольшее применение при реализации каскада на дискретных компонентах.

Основными элементами схемы являются источник питания

, управляемый элемент - транзистор и резистор . Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекания управляемого по цепи базы коллекторного тока создается усиленное переменное напряжение на выходе схемы. Остальные элементы каскада выполняют вспомогательную роль. Конденсаторы , являются разделительными. Конденсатор исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи → → и, во-вторых, обеспечить независимость от внутреннего сопротивления этого источника напряжения на базе в режиме покоя. Функция конденсатора сводится к пропусканию в цепь нагрузки переменной составляющей напряжения и задержанию постоянной составляющей.

Резисторы

и используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ток покоя управляемого элемента (в данном случае ток ) создается заданием соответствующей величины тока базы покоя . Резистор предназначен для создания цепи протекания тока . Совместно с резистор обеспечивает исходное напряжение на базе относительно зажима ”+” источника питания.

Резистор

является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменении температуры. Температурная зависимость параметров режима покоя обусловливается зависимостью коллекторного тока покоя от температуры. Основными причинами такой зависимости являются изменения от температуры начального тока коллектора , напряжения и коэффициента . Температурная нестабильность указанных параметров приводит к прямой зависимости тока от температуры. При отсутствии мер по стабилизации тока , его температурные изменения вызывают изменение режима покоя каскада, что может привести, как будет показано далее, к режиму работы каскада в нелинейной области характеристик транзистора и искажению формы кривой выходного сигнала. Вероятность появления искажений повышается с увеличением амплитуды выходного сигнала.

Проявление отрицательной обратной связи и ее стабилизирующего действия на ток

В начале этой главы мы увидели, как транзисторы, работая в режиме либо «насыщения», либо «отсечки», могут использоваться в качестве ключей. В последнем разделе мы увидели, как транзисторы ведут себя в своих «активных» режимах, между экстремальными режимами насыщения и отсечки. Поскольку транзисторы способны управлять током аналоговым (плавно изменяющимся) способом, они находят применение и в качестве усилителей для аналоговых сигналов.

Одна из наиболее простых для изучения схем транзисторного усилителя ранее показала коммутирующие способности транзистора (рисунок ниже).

NPN транзистор как простой ключ (на рисунке показаны направления движения потоков электронов)

Она называется схемой с общим эмиттером, потому что (игнорируя батарею источника питания) и у источника сигнала, и у нагрузки есть общая точка подключения к транзистору - эмиттера (как показано на рисунке ниже). И, как мы увидим в последующих разделах этой главы, это не единственный способ использования транзистора в качестве усилителя.


Каскад усилителя с общим эмиттером: у входного и выходного сигналов при подключении к транзистору есть общая точка - эмиттер

Ранее небольшой ток от солнечного элемента насыщал транзистор, зажигавший лампу. Теперь зная, что транзисторы способны «задавливать» ток коллектора в соответствии с величиной тока базы, подаваемого от источника входного сигнала, мы можем увидеть, что в этой схеме яркость лампы может контролироваться яркостью света, падающего на солнечный элемент. Когда на солнечный элемент попадает мало света, лампа будет светиться тускло. По мере того, как на солнечный элемент попадает больше света, яркость лампы будет возрастать.

Предположим, что нас заинтересовало использование солнечного элемента в качестве измерителя яркости света. Мы хотим измерить яркость падающего света с помощью солнечного элемента, используя его выходной ток для управления стрелкой индикатора. Для этого можно подключить индикатор к солнечному элементу напрямую (рисунок ниже). На самом деле простейшие измерители яркости в фотографии работают подобным же образом.

Хотя этот способ может работать и при измерении умеренной яркости света, при низкой яркости он работать уже не будет. Поскольку солнечный элемент должен обеспечивать потребности в энергии индикатора для движения стрелки, то эта система неизбежно будет ограничена по своей чувствительности. Предполагая, что нам необходимо измерять очень низкие яркости света, нужно найти другое решение.

Возможно, самым прямым решением этой проблемы является использование транзистора (рисунок ниже) для усиления тока солнечного элемента, чтобы можно было получить большее отклонение стрелки индикатора для более тусклого света.


Ток солнечного элемента при низкой яркости света должен быть усилен (на рисунке показаны направления движения потоков электронов)

Ток через индикатор в этой схеме будет в β раз больше тока через солнечный элемент. Для транзистора с β, равным 100, это дает существенное увеличение чувствительности измерений. Разумно отметить, что дополнительная мощность для перемещения стрелки индикатора исходит от батареи в правой части схемы, а не от самого солнечного элемента. Всё, что делает ток солнечного элемента, это управляет током батареи, чтобы обеспечить более высокие показания индикатора, чем мог бы обеспечить солнечный элемент без посторонней помощи.

Поскольку транзистор является устройством, регулирующим ток, и поскольку движение стрелки индикатора определяется током через катушку индикатора, показания измерителя должны зависеть только от тока солнечного элемента, а не от величины напряжения, обеспечиваемого аккумулятором. Это означает, что точность схемы не зависит от состояния аккумулятора, что является важной особенностью! Всё, что требуется от батареи, - это определенные минимальные выходные напряжения и ток, способные отклонить стрелку индикатора на всю шкалу.

Другим способом использования схемы с общим эмиттером является получение определяемого входным сигналом выходного напряжения, а не определенного значения выходного тока. Давайте заменим стрелочный индикатор на простой резистор и измерим напряжение между коллектором и эмиттером (рисунок ниже).


Когда солнечный элемент затемнен (нет тока), транзистор будет находиться в режиме отсечки, и будет вести себя как разомкнутый ключ между коллектором и эмиттером. Это приведет к максимальному падению напряжения между коллектором и эмиттером, что даст максимальное V вых, равное полному напряжению батареи.

При полной мощности (максимальной освещенности) солнечный элемент будет приводить транзистор в режим насыщения, заставляя его вести себя как замкнутый ключ между коллектором и эмиттером. Результатом будет минимальное падение напряжение между коллектором и эмиттером, или почти нулевое выходное напряжение. На самом деле открытый транзистор никогда не сможет достичь нулевого падения напряжения между коллектором и эмиттером из-за двух PN-переходов, через которые должен проходить ток коллектора. Однако это «напряжение насыщения коллектор-эмиттер» будет довольно низким, примерно несколько десятых долей вольта, в зависимости от конкретного используемого транзистора.

При выходных сигналах солнечного элемента для уровней освещенности где-то между нулем и максимумом транзистор будет находиться в активном режиме, а выходное напряжение будет где-то между нулем и полным напряжением батареи. Важно отметить, что в схеме с общим эмиттером выходное напряжение инвертируется относительно входного сигнала. То есть по мере увеличения входного сигнала выходное напряжение уменьшается. По этой причине схема усилителя с общим эмиттером называется инвертирующим усилителем.

Быстрое моделирование схемы в SPICE (рисунок и список соединений ниже) проверит наши выводы об этой усилительной схеме.


Схема усилителя с общим эмиттером с номерами узлов в SPICE (список соединений приведен ниже) *common-emitter amplifier i1 0 1 dc q1 2 1 0 mod1 r 3 2 5000 v1 3 0 dc 15 .model mod1 npn .dc i1 0 50u 2u .plot dc v(2,0) .end

В начале моделирования (на рисунке выше), когда источник ток (солнечного элемента) выдает нулевой ток, транзистор находится в режиме отсечки, и выходное напряжение усилителя (между узлами 2 и 0) равно всем 15 вольтам напряжения батареи. По мере того, как ток солнечного элемента начинает увеличиваться, выходное напряжение пропорционально уменьшается, пока транзистор не достигнет насыщения при токе базы 30 мкА (ток коллектора 3 мА). Обратите внимание, как график выходного напряжения идеально линеен (шаги по 1 вольту от 15 вольт до 1 вольта) до точки насыщения, где он никогда не достигнет нуля. Этот эффект упоминался ранее, полностью открытый транзистор не может достичь точно нулевого падения напряжения между коллектором и эмиттером из-за наличия внутренних переходов. То, что мы видим, это резкое снижение выходного напряжения от 1 вольта до 0.2261 вольта при возрастании входного тока с 28 мкА до 30 мкА, а затем дальнейшее снижение выходного напряжения (хотя и со значительно меньшим шагом). Наименьшее выходное напряжение, полученное при этом моделировании, составляет 0.1299 вольта, почти равно нулю.

До сих пор мы видели, как транзистор, как усилитель сигналов постоянных напряжения и тока. В примере измерения освещенности с помощью солнечного элемента нам было интересно усилить выходной сигнал постоянного тока от солнечного элемента для управления стрелочным индикатором постоянного тока или получить на выходе постоянное напряжение. Однако это не единственный способ использования транзистора в качестве усилителя. Часто бывает, необходим усилитель переменного тока для усиления сигналов переменных тока и напряжения. Один из наиболее распространенных случаев - аудио электроника (радио, телевидение). Ранее мы видели пример аудио сигнала от камертона, активирующего транзисторный ключ (рисунок ниже). Посмотрим, можем ли мы изменить эту схему для передачи мощности не на лампу, а на динамик.


Транзисторный ключ, активируемый звуком (на рисунке показаны направления движения потоков электронов)

В исходной схеме двухполупериодный мостовой выпрямитель использовался для преобразования сигнала переменного напряжения от микрофона в постоянное напряжение для управления входом транзистора. Всё, что нам было нужно, это включить лампу с помощью звукового сигнала от микрофона, для этих целей такой схемы было достаточно. Но теперь мы хотим усилить сигнал переменного напряжения и подать его на динамик. Это означает, что мы больше не можем выпрямлять сигнал с выхода микрофона, поскольку для подачи на транзистор нам нужен неискаженный сигнал! Удалим из схемы мостовой выпрямитель и заменим лампу на динамик.


Так как микрофон может генерировать напряжения, превышающие прямое падение напряжения на PN-переходе база-эмиттер, последовательно с микрофоном я поместил резистор. Давайте промоделируем схему на рисунке ниже с помощью SPICE. Список соединений приведен ниже.


SPICE модель аудио усилителя с общим эмиттером common-emitter amplifier vinput 1 0 sin (0 1.5 2000 0 0) r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 8 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.74m .plot tran v(1,0) i(v1) .end

На графиках моделирования (рисунок выше) показаны как входное напряжение (сигнал переменного напряжения с амплитудой 1,5 вольта и частотой 2000 Гц), так и ток через батарею 15 вольт, который совпадает с током через динамик. Здесь мы видим полную синусоиду входного переменного напряжения (и с положительной, и с отрицательной полуволнами) и полуволны выходного тока только одной полярности. Если бы мы на самом деле подали этот сигнал на динамик, звук из него был бы сильно искажен.

Что не так с этой схемой? Почему она не будет точно воспроизводить полную форму переменного напряжения от микрофона? Ответ на этот вопрос можно найти путем тщательной проверки модели транзистора на основе диода и источника тока (рисунок ниже).


Ток коллектора контролируется, или регулируется, в режиме стабилизации тока на постоянном значении в соответствии с величиной тока, протекающего через переход база-эмиттер. Обратите внимание, что оба пути протекания тока через транзистор являются однонаправленными: только одно направление! Несмотря на наше намерение использовать транзистор для усиления сигнала переменного тока, он, по сути, является устройством постоянного тока, которое способно работать с токами только одного направления. Мы можем подать входной сигнал переменного напряжения между базой и эмиттером, но электроны в этой схеме не смогут протекать во время того полупериода, когда переход база-эмиттер будет смещен в обратном направлении. Следовательно, транзистор будет оставаться в режиме отсечки на протяжении всей этой части периода. Он будет «включаться» в активный режим только в том случае, если входное напряжение имеет правильную полярность, чтобы смещать переход база-эмиттер в прямом направлении, и только тогда, когда это напряжение достаточно велико, чтобы превысить прямое падение напряжения перехода. Помните, что биполярные транзисторы являются устройствами, которые управляются током: они регулируют ток коллектора, основываясь на протекании тока от базы к эмиттеру, а не на наличии напряжения между базой и эмиттером.

Единственный способ, с помощью которого мы можем заставить транзистор выдавать в динамик сигнала без искажения его формы, заключается в том, чтобы удерживать транзистор в активном режиме всё время. Это значит, что мы должны поддерживать ток через базу в течение всего периода входного сигнала. Следовательно, PN-переход база-эмиттер должен постоянно быть смещен в прямом направлении. К счастью, это может быть достигнуто с помощью постоянного напряжения смещения, добавленного к входному сигналу. При подключении источника постоянного напряжения с достаточно большим уровнем последовательно с источником сигнала переменного напряжения прямое смещение может поддерживаться во всех точках синусоиды сигнала (рисунок ниже).


V смещ удерживает транзистор в активном режиме common-emitter amplifier vinput 1 5 sin (0 1.5 2000 0 0) vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 8 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.78m .plot tran v(1,0) i(v1) .end Благодаря V смещ выходной ток I(v(1)) не искажается

При наличии источника напряжения смещения 2,3 вольта транзистор остается в активном режиме на протяжении всего периода синусоиды, верно воспроизводя форму сигнала на динамике (рисунок выше). Обратите внимание, что входное напряжение (измеренное между узлами 1 и 0) колеблется между примерно 0,8 вольта и 3,8 вольта, как и ожидалось, размах составляет 3 вольта (амплитуда напряжения источника равна 1,5 вольта). Выходной ток (протекает через динамик) изменяется от нуля до почти 300 мА и на 180° отличается по фазе от входного сигнала (с микрофона).

На рисунке ниже показан другой вид этой же схемы, на этот раз с несколькими осциллографами, подключенными к интересующим нас точкам для отображения соответствующих сигналов.


Вход базы смещен вверх. Выход инвертирован.

Важной частью является необходимость смещения в схеме транзисторного усилителя для получения полного воспроизведения формы сигнала. Отдельный раздел этой главы будет полностью посвящен объектам и способам смещения. На данный момент достаточно понять, что смещение может потребоваться для получения на выходе усилителя напряжения и тока правильной формы.

Теперь, когда у нас есть работающая схема усилителя, мы можем исследовать ее напряжение, ток и усиление. Типовой транзистор, используемый в этих исследованиях, имеет значение β = 100, о чем свидетельствует короткая распечатка параметров транзистора, приведенная ниже (этот список параметров для краткости был сокращен).

SPICE параметры биполярного транзистора:

Type npn is 1.00E-16 bf 100.000 nf 1.000 br 1.000 nr 1.000

β указан под аббревиатурой " bf ", что фактически означает "бета, прямое" (“beta, forward”). Если бы мы захотели вставить для исследования наш собственный коэффициент β, мы могли бы сделать это в строке.model в списке соединений SPICE.

Так как β - это отношение тока коллектора к току базы, и у нас нагрузка соединена последовательно с коллектором транзистора, а наш источник соединен последовательно с базой, отношение выходного тока к входному току будет равно бета. Таким образом, усиление по току в этом примере усилителя составляет 100.

Усиление по напряжению посчитать немного сложнее, чем усиление по току. Как всегда, коэффициент усиления по напряжению определяется как отношение выходного напряжения к входному напряжению. Чтобы экспериментально определить его, мы изменим наш последний анализ SPICE для построения графика не выходного тока, а выходного напряжения, чтобы сравнить два графика напряжения (рисунок ниже).

Common-emitter amplifier vinput 1 5 sin (0 1.5 2000 0 0) vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 8 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.78m .plot tran v(1,0) v(3) .end Выходное напряжение V(1) на сопротивлении r динамик для сравнения со входным сигналом

При построении в одном масштабе (от 0 до 4 вольт) мы видим, что выходной сигнал на рисунке выше имеет меньшую амплитуду, чем входной сигнал, и к тому же он находится на более высоком уровне смещения по сравнению с входным сигналом. Поскольку коэффициент усиления по напряжению для усилителя переменного тока определяется отношением амплитуд, мы можем игнорировать любую разницу в смещениях по постоянному напряжению между этими двумя сигналами. Несмотря на это, входной сигнал всё равно больше выходного, что говорит о том, что коэффициент усиления по напряжению меньше 1 (отрицательное значение в дБ).

Честно говоря, этот низкий коэффициент усиления по напряжению не характерен для всех усилителей с общим эмиттером. Это является следствием большого несоответствия между входным сопротивлением и сопротивлением нагрузки. Наше входное сопротивление (R1) здесь составляет 1000 Ом, а нагрузка (динамик) составляет только 8 Ом. Поскольку коэффициент усиления по току определяется исключительно β, и поскольку этот параметр β фиксирован, коэффициент усиления по току для этого усилителя не изменится с изменением любого из этих сопротивлений. Однако коэффициент усиления по напряжению зависит от этих сопротивлений. Если мы изменим сопротивление нагрузки, сделав его более большим, падение напряжения на нем пропорционально увеличится при тех же значениях токов, и мы увидим на графике сигнал с большей амплитудой. Давайте попробуем промоделировать схему снова, но на этот раз с нагрузкой 30 Ом (рисунок ниже).

Common-emitter amplifier vinput 1 5 sin (0 1.5 2000 0 0) vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 30 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.78m .plot tran v(1,0) v(3) .end Увеличение r динамик до 30 Ом увеличивает выходное напряжение

На этот раз размах выходного напряжения значительно больше, чем у входного напряжения (рисунок выше). При внимательном рассмотрении мы видим, что размах выходного сигнала составляет примерно 9 вольт, примерно в 3 раза больше размаха входного сигнала.

Мы можем выполнить еще одни компьютерный анализ этой схемы, на этот раз поручая SPICE с точки зрения переменного напряжения, давая нам значения амплитуд входных и выходных напряжений, вместо осциллограмм (таблица ниже).

Список соединений SPICE для печати входных и выходных значений переменных напряжений.

Common-emitter amplifier vinput 1 5 ac 1.5 vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 30 v1 4 0 dc 15 .model mod1 npn .ac lin 1 2000 2000 .print ac v(1,0) v(4,3) .end freq v(1) v(4,3) 2.000E+03 1.500E+00 4.418E+00

Измерения амплитуд сигналов на входе и на выходе показали 1,5 вольта на входе и 4,418 вольта на выходе. Это дает нам коэффициент усиления по напряжению 2,9453 (4,418 В / 1,5 В), или 9,3827 дБ.

Поскольку коэффициент усиления по току для усилительного каскада с общим эмиттером фиксирован и равен β, а входное и выходное напряжения будут равных входному и выходному токам, умноженным на соответствующие сопротивления, мы можем получить формулу для приближенного определения коэффициента усиления по напряжению:

Как вы можете видеть, расчетный коэффициент усиления по напряжению довольно близок к результатам моделирования. При идеально линейном поведении транзисторов эти два набора значений будут точно равны. SPICE делает умную работу по учету многих «причуд» работы биполярного транзистора при их анализе, следовательно, присутствует и небольшое несоответствие между расчетными значениями и результатами моделирования.

Эти коэффициенты усиления по напряжению остаются неизменными независимо от того, где в схеме мы измеряем выходное напряжение: между коллектором и эмиттером или на резисторе нагрузки, как это было сделано при последнем анализе. Изменение значения выходного напряжения для любого заданного значения входного напряжения будет оставаться неизменным. В качестве доказательства этого утверждения рассмотрите два следующих анализа SPICE. Первое моделирование на рисунке ниже проведено во временной области, чтобы получить графики входного и выходного напряжений. Вы заметите, что эти два сигнала отличаются по фазе на 180°. Второе моделирование в таблице ниже представляет собой анализ по переменному напряжению, предоставляющий просто показания пиковых напряжений для входа и для выхода.

Список соединений SPICE для первого анализа:

Common-emitter amplifier vinput 1 5 sin (0 1.5 2000 0 0) vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 30 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.74m .plot tran v(1,0) v(3,0) .end Усилительный каскад с общим эмиттером с R динамик усиливает сигнал по напряжению

Список соединений SPICE для анализа по переменному току:

Common-emitter amplifier vinput 1 5 ac 1.5 vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 30 v1 4 0 dc 15 .model mod1 npn .ac lin 1 2000 2000 .print ac v(1,0) v(3,0) .end freq v(1) v(3) 2.000E+03 1.500E+00 4.418E+00

У нас всё еще пиковое напряжение на выходе равно 4,418 вольт при пиковом напряжении на входе 1,5 вольта. Единственное отличие от данных последнего моделирования - это то, что в первом моделировании нам видна фаза выходного напряжения.

До сих пор в примерах схем, показанных в этом разделе, мы использовали только NPN транзисторы. PNP транзисторы также можно использовать в любом типе схемы усилительного каскада, если соблюдается правильность полярностей и направлений токов, и схема с общим эмиттером не является исключением. Инверсия и усиление выходного сигнала у усилителя на PNP транзисторе, аналогичны усилителю на NPN транзисторе, только полярности батарей будут противоположными (рисунок ниже).


Подведем итоги:

  • Усилительные транзисторные каскады с общим эмиттером носят такое название, потому что у входного и выходного напряжений есть общая точка подключения к транзистору - эмиттер (не учитывая каких-либо источников питания).
  • Транзисторы - это, по сути, устройства постоянного тока: они не могут напрямую обрабатывать напряжения или токи, которые меняют своё направление. Чтобы заставить их работать для усиления сигналов переменного напряжения, входной сигнал должен быть смещен постоянным напряжением, чтобы удерживать транзистор в активном режиме на протяжении всего периода синусоиды сигнала. Это называется смещением.
  • Если выходное напряжение в схеме усилителя с общим эмиттером измеряется между эмиттером и коллектором, оно будет на 180° отличаться по фазе от входного напряжения. Таким образом, усилитель с общим эмиттером называется схемой инвертирующего усилителя.
  • Коэффициент усиления по току транзисторного усилителя с общим эмиттером с нагрузкой, подключенной последовательно с коллектором, равен β. Коэффициент усиления по напряжению транзисторного усилителя с общим эмиттером может быть приблизительно рассчитан по формуле:
    \
    где R вых - это резистор, соединенный последовательно с коллектором; а R вх - это резистор, соединенный последовательно с базой.

Схема включения биполярного транзистора с общим эмиттером приведена на рис. 6.13:

В транзисторе, включенном по схеме с общим эмиттером, имеет место усиление не только по напряжению, но и по току. Входными параметрами для схемы с общим эмиттером будут ток базы I Б , и напряжение на базе относительно эмиттера U БЭ, а выходными характеристиками будут ток коллектора I К и напряжение на коллекторе U КЭ . Для любых напряжений:

U КЭ = U КБ + U БЭ

Отличительной особенностью режима работы с ОЭ является одинаковая полярность напряжения смещения на входе (базе) и выходе (коллекторе): отрицательный потенциал в случае pnp -транзистора и положительный в случае npn -транзистора. При этом переход база-эмиттер смещается в прямом направлении, а переход база-коллектор – в обратном.

Ранее при анализе биполярного транзистора в схеме с общей базой была получена связь между током коллектора и током эмиттера в следующем виде:
. В схеме с общим эмиттером дляpnp -транзистора (в соответствии с первым законом Кирхгофа) (6.1):
, отсюда получим:

Коэффициент α/(1-α) называется коэффициентом усиления по току биполярного транзистора в схеме с общим эмиттером . Обозначим этот коэффициент знаком β , итак:

.

Коэффициент передачи тока для транзистора, включенного по схеме с общим эмиттером β показывает, во сколько раз изменяется ток коллектора I К при изменении тока базы I Б. Поскольку величина коэффициента передачи α близка к единице (α <1), то из уравнения (6.38) следует, что коэффициент усиления β будет существенно больше единицы (β >>1). При значениях коэффициента передачи α =0,98÷0,99 коэффициент усиления тока базы будет лежать в диапазоне β =50÷100.

6.2.1 Статические вольт-амперные характеристики транзистора, включенные по схеме с общим эмиттером

Рассмотрим ВАХ pnp -транзистора в режиме ОЭ (рис. 6.13, 6.14).

При U КЭ =0
. Сувеличением напряжения U БЭ концентрация на переходе ЭБ растет (рис. 6.15,а), градиент концентрации инжектированных дырок растет, диффузионный ток дырок, как и в прямо смещенном pn -переходе, растет экспоненциально (т. А) и отличается от тока эмиттера только масштабом (6.36).

При обратных напряжениях на коллекторе и фиксированном напряжении на ЭП |U БЭ | (рис. 6.15,б) постоянной будет и концентрация дырок в базе вблизи эмиттера. Увеличение напряжения U КЭ будет сопровождаться расширением ОПЗ коллекторного перехода и уменьшением ширины базы (эффект Эрли) и, следовательно, уменьшением общего количества дырок, находящихся в базе.

При этом градиент концентрации дырок в базе будут расти, что приводит к дальнейшему уменьшению их концентрации. Поэтому число рекомбинаций электронов и дырок в базе в единицу времени уменьшается (возрастает коэффициент переноса ). Так как электроны для рекомбинации приходят через базовый вывод, ток базы уменьшается и входные ВАХ смещаются вниз .

При U БЭ =0 и отрицательном напряжении на коллекторе (U кб << 0) ток через эмиттерный переход равен нулю, в базе транзистора концентрация дырок меньше равновесной, так как у КП эта концентрация равна нулю, а у ЭП ее величина определяется равновесным значением. Через коллекторный переход протекает ток экстрагированных из коллектора дырок I КЭ 0 .

В базе, как и в pn -переходе при обратном смещении, процесс тепловой генерации будет преобладать над процессом рекомбинации. Генерированные электроны уходят из базы через базовый вывод, что означает наличие электрического тока, направленного в базу транзистора (т. В). Это – режим отсечки , он характеризуется сменой направления тока базы.

Выходные ВАХ.

В активном режиме (|U КЭ |> |U БЭ |>0 ) поток инжектированных эмиттером дырок p экстрагируется коллекторным переходом также, как и в режиме ОБ, с коэффициентом
. Часть дырок(1-α) p рекомбинирует в базе в электронами, поступающими из омического контакта базы.

При увеличении тока базы отрицательный заряд электронов уменьшает потенциальный барьер эмиттерного перехода, вызывая дополнительную инжекцию дырок в базе.

Проанализируем, почему малые изменения тока базы I Б вызывают значительные изменения коллекторного тока I К. Значение коэффициента β , существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.

Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА. Ток базы стократно вызывает увеличение тока коллектора.

По аналогии с (6.34) можно записать:

Учитывая (6.1):
, получим:

Учитывая, что

, а

где - сквозной тепловой ток отдельно взятого коллекторногоpn -перехода в режиме оторванной базы (при
, т. С, режим отсечки ). За счет прямого смещения базового перехода (рис. 6.16) ток
много больше теплового тока коллектора I к 0 .

Рис. 6.16 U БЭ =const,U КЭ – переменное

В режиме насыщения база должна быть обогащена неосновными носителями. Критерием этого режима является равновесная концентрация носителей на КП (U КБ =0 ). В силу уравнения U КЭ = U КБ + U БЭ, равенство напряжения на коллекторном переходе нулю может иметь место при небольших отрицательных напряжениях между базой и эмиттером. При U КЭ 0 иU БЭ <0, оба перехода смещаются в прямом направлении, их сопротивление падает. При малых напряжениях на коллекторе (U КЭ < U БЭ ) U КБ меняет свой знак, сопротивление коллекторного перехода резко уменьшается, коллектор начинает инжектировать дырки в базу. Поток дырок из коллектора компенсирует поток дырок из эмиттера. Ток коллектора меняет свой знак (на выходных ВАХ эта область обычно не показывается).

При больших напряжениях на коллекторе возможен пробой коллекторного перехода за счет лавинного умножения носителей в ОПЗ (т. D). Напряжение пробоя зависит от степени легирования областей транзистора. В транзисторах с очень тонкой базой возможно расширение ОПЗ на всю базовую область (происходит прокол базы).

Сравнивая выходные ВАХ транзистора, включенного по схеме с ОЭ и ОБ (рис. 6.17), можно заметить две наиболее существенные особенности: во-первых, характеристики в схеме с ОЭ имеют больший наклон, свидетельствующий об уменьшении выходного сопротивления транзистора и, во-вторых, переход в режим насыщения наблюдается при отрицательных напряжениях на коллекторе.

Рост тока коллектора с увеличением U КЭ определяется уменьшением ширины базы. Коэффициенты переноса æ и передачи тока эмиттера α растут, но коэффициент передачи тока базы в схеме с ОЭ
растет быстрееα . Поэтому при постоянном токе базы ток коллектора увеличивается сильнее, чем в схеме с ОБ.

Рис. 6.23 Выходные характеристики pnp -транзистора

а – в схеме с ОБ, б – в схеме с ОЭ

6.3 Включение транзистора по схеме с общим коллектором

Если входная и выходная цепи имеют общим электродом коллектор (ОК) и выходным током является ток эмиттера, а входным ток базы, то для коэффициента передачи тока справедливо:

Вв таком включении коэффициент передачи тока несколько выше, чем во включении ОЭ, а коэффициент усиления по напряжению незначительно меньше единицы, так как разность потенциалов между базой и эмиттером практически не зависит от тока базы. Потенциал эмиттера практически повторяет потенциал базы, поэтому каскад, построенный на основе транзистора с ОК, называют эмиттерным повторителем . Однако этот тип включения используется сравнительно редко.

Сопоставляя полученные результаты, можно сделать выводы :

    Схема с ОЭ обладает высоким усилением как по напряжению, так и по току, У нее самое большое усиление по мощности. Отметим, что схема изменяет фазу выходного напряжения на 180. Это самая распространенная усилительная схема.

    Схема с ОБ усиливает напряжение (примерно, как и схема с ОЭ), но не усиливает ток. Фаза выходного напряжения по отношению к входному не меняется. Схема находит применение в усилителях высоких и сверхвысоких частот.

    Схема с ОК (эмиттерный повторитель) не усиливает напряжение, но усиливает ток. Основное применение данной схемы - согласование сопротивлений источника сигнала и низкоомной нагрузки.