Exemple de înmulțire a matricilor cu dimensiuni diferite. Matematică pentru manechini


Acest manual vă va ajuta să învățați cum să efectuați operatii cu matrici: adunarea (scăderea) matricelor, transpunerea unei matrice, înmulțirea matricelor, aflarea matricei inverse. Tot materialul este prezentat într-o formă simplă și accesibilă, sunt date exemple relevante, astfel încât chiar și o persoană nepregătită poate învăța cum să efectueze acțiuni cu matrice.

Pentru automonitorizare și autotestare, puteți descărca gratuit un calculator matrice >>>. Voi încerca să minimizez calculele teoretice în unele locuri sunt posibile explicații „pe degete” și utilizarea unor termeni neștiințifici. Iubitori de teorie solidă, vă rugăm să nu vă implicați în critici, sarcina noastră este.

invata sa efectuezi operatii cu matrici Pentru pregătirea SUPER FAST pe tema (cine este „pe foc”) există un curs intensiv pdf

Matrice, determinant și test! O matrice este un tabel dreptunghiular al unora elemente O matrice este un tabel dreptunghiular al unora. Ca vom lua în considerare numerele, adică matrice numerice. ELEMENT

este un termen. Este indicat să rețineți termenul, va apărea des, nu întâmplător am folosit font aldine pentru a-l evidenția. Desemnare:

matricele sunt de obicei notate cu majuscule latine Exemplu:

Luați în considerare o matrice de două câte trei: O matrice este un tabel dreptunghiular al unora:

Această matrice este formată din șase

Toate numerele (elementele) din interiorul matricei există singure, adică nu se pune problema vreunei scăderi:

Este doar un tabel (set) de numere! De asemenea, vom fi de acord nu rearanja

numere, dacă nu se specifică altfel în explicații. Fiecare număr are propria sa locație și nu poate fi amestecat!

Matricea în cauză are două rânduri:

si trei coloane: STANDARD : atunci când vorbim despre dimensiunile matricei la început

indicați numărul de rânduri și abia apoi numărul de coloane. Tocmai am defalcat matricea de două câte trei. Dacă numărul de rânduri și coloane ale unei matrice este același, atunci matricea este numită pătrat , De exemplu:

– o matrice de trei câte trei. Dacă o matrice are o coloană sau un rând, atunci se mai numesc și astfel de matrici.

De fapt, conceptul de matrice îl cunoaștem încă de la școală să considerăm, de exemplu, un punct cu coordonatele „x” și „y”: . În esență, coordonatele unui punct sunt scrise într-o matrice una câte două. Apropo, iată un exemplu de ce contează ordinea numerelor: și sunt două puncte complet diferite pe plan.

Acum să trecem la studii operatii cu matrici:

1) Primul act. Eliminarea unui minus din matrice (introducerea unui minus în matrice).

Să revenim la matricea noastră . După cum probabil ați observat, există prea multe numere negative în această matrice. Acest lucru este foarte incomod din punctul de vedere al efectuării diferitelor acțiuni cu matricea, este incomod să scrieți atât de multe minusuri și pur și simplu arată urât în ​​design.

Să mutăm minusul în afara matricei prin schimbarea semnului fiecărui element al matricei:

La zero, după cum înțelegeți, semnul nu se schimbă, de asemenea, zero este zero;

Exemplu invers: . Arată urât.

Să introducem un minus în matrice prin schimbarea semnului fiecărui element al matricei:

Ei bine, s-a dovedit mult mai frumos. Și, cel mai important, va fi MAI UȘOR să efectuați orice acțiuni cu matricea. Pentru că există un astfel de semn popular matematic: cu cât mai multe minusuri, cu atât mai multe confuzii și erori.

2) Actul doi. Înmulțirea unei matrice cu un număr.

matricele sunt de obicei notate cu majuscule latine

Este simplu, pentru a înmulți o matrice cu un număr, ai nevoie fiecare element de matrice înmulțit cu un număr dat. În acest caz - un trei.

Un alt exemplu util:

– înmulțirea unei matrice cu o fracție

Mai întâi să ne uităm la ce să facem NU ESTE NEVOIE:

NU ESTE NEVOIE să introduceți o fracție în matrice, în primul rând, doar complică acțiunile ulterioare cu matricea și, în al doilea rând, îngreunează ca profesorul să verifice soluția (mai ales dacă; – răspunsul final al sarcinii).

Și, în plus, NU ESTE NEVOIEîmpărțiți fiecare element al matricei la minus șapte:

Din articol Matematică pentru manechin sau de unde să încep, ne amintim că la matematica superioară se încearcă să evite fracțiile zecimale cu virgule în toate modurile posibile.

Singurul lucru este preferabil Ce trebuie să faceți în acest exemplu este să adăugați un minus la matrice:

Dar dacă numai TOATE elementele matricei au fost împărțite la 7 fara urma, atunci ar fi posibil (și necesar!) să se împartă.

matricele sunt de obicei notate cu majuscule latine

În acest caz, puteți TREBUIEînmulțiți toate elementele matricei cu , deoarece toate numerele matricei sunt divizibile cu 2 fara urma.

Notă: în teoria matematicii de învățământ superior nu există conceptul de „diviziune”. În loc să spuneți „acest împărțit cu asta”, puteți spune întotdeauna „acest înmulțit cu o fracție”. Adică împărțirea este un caz special de înmulțire.

3) Actul trei. Transpunerea matricei.

Pentru a transpune o matrice, trebuie să scrieți rândurile acesteia în coloanele matricei transpuse.

matricele sunt de obicei notate cu majuscule latine

Transpune matricea

Există un singur rând aici și, conform regulii, trebuie scris într-o coloană:

– matrice transpusă.

O matrice transpusă este de obicei indicată printr-un superscript sau un prim în dreapta sus.

Exemplu pas cu pas:

Transpune matricea

Mai întâi rescriem primul rând în prima coloană:

Apoi rescriem a doua linie în a doua coloană:

Și, în sfârșit, rescriem al treilea rând în a treia coloană:

Gata. În linii mari, transpunerea înseamnă întoarcerea matricei pe o parte.

4) Actul patru. Suma (diferența) matricelor.

Suma matricelor este o operație simplă.
NU TOATE MATRICILE POT FI POLIATE. Pentru a efectua adunarea (scăderea) matricelor, este necesar ca acestea să aibă ACEEAȘI DIMENSIUNE.

De exemplu, dacă se dă o matrice două câte două, atunci aceasta poate fi adăugată numai cu o matrice două câte două și nu alta!

matricele sunt de obicei notate cu majuscule latine

Adăugați matrici Şi

Pentru a adăuga matrice, trebuie să adăugați elementele corespunzătoare ale acestora:

Pentru diferența de matrice regula este similară, este necesar să se găsească diferența elementelor corespunzătoare.

matricele sunt de obicei notate cu majuscule latine

Găsiți diferența de matrice ,

Cum poți rezolva mai ușor acest exemplu, ca să nu te încurci? Este recomandabil să scăpați de minusurile inutile pentru a face acest lucru, adăugați un minus la matrice:

Notă: în teoria matematicii de învățământ superior nu există conceptul de „scădere”. În loc să spuneți „scădeți acest lucru din asta”, puteți spune întotdeauna „adăugați un număr negativ la acesta”. Adică, scăderea este un caz special de adunare.

5) Actul cinci. Înmulțirea matricei.

Ce matrice pot fi multiplicate?

Pentru ca o matrice să fie înmulțită cu o matrice, este necesar astfel încât numărul de coloane de matrice să fie egal cu numărul de rânduri de matrice.

matricele sunt de obicei notate cu majuscule latine
Este posibil să înmulțim o matrice cu o matrice?

Aceasta înseamnă că datele matricei pot fi multiplicate.

Dar dacă matricele sunt rearanjate, atunci, în acest caz, înmulțirea nu mai este posibilă!

Prin urmare, înmulțirea nu este posibilă:

Nu este atât de rar să întâlniți sarcini cu un truc, atunci când elevului i se cere să înmulțească matrici, a căror înmulțire este evident imposibilă.

Trebuie remarcat faptul că în unele cazuri este posibilă multiplicarea matricelor în ambele moduri.
De exemplu, pentru matrice, și înmulțirea și înmulțirea sunt posibile

Adăugarea matricei:

Scăderea și adunarea matricelor se reduce la operaţiile corespunzătoare asupra elementelor lor. Operație de adăugare a matricei intrat doar pentru matrici aceeași dimensiune, adică pt matrici, în care numărul de rânduri și, respectiv, de coloane este egal. Suma matricelor A și B sunt numite matrice C, ale cărei elemente sunt egale cu suma elementelor corespunzătoare. C = A + B c ij = a ij + b ij Definit în mod similar diferenta de matrice.

Înmulțirea unei matrice cu un număr:

Operație de înmulțire (diviziune) a matricei de orice dimensiune cu un număr arbitrar se reduce la înmulțirea (împărțirea) fiecărui element matrici pentru acest număr. Produs MatrixȘi se numește numărul k matrice B, astfel încât

b ij = k × a ij . B = k × A b ij = k × a ij . Matrice- A = (-1) × A se numește opus matrice O.

Proprietățile adunării matricelor și înmulțirii unei matrice cu un număr:

Operații de adunare a matriceiŞi înmulțirea matriceală asupra unui număr au următoarele proprietăți: 1. A + B = B + A; 2. A + (B + C) = (A + B) + C; 3. A + 0 = A; 4. A - A = 0; 5. 1 × A = A; 6. α × (A + B) = αA + αB; 7. (α + β) × A = αA + βA; 8. α × (βA) = (αβ) × A; , unde A, B și C sunt matrici, α și β sunt numere.

Înmulțire matrice (produs matrice):

Operația de înmulțire a două matrici se introduce numai pentru cazul în care numărul de coloane din primul matrici egal cu numărul de linii ale celui de-al doilea matrici. Produs MatrixȘi m×n pe matriceÎn n×p, numit matrice Cu m×p astfel încât cu ik = a i1 × b 1k + a i2 × b 2k + ... + a in × b nk , adică se găsește suma produselor elementelor rândului i matriciȘi la elementele corespunzătoare ale coloanei j-a matrici B. Dacă matrici A și B sunt pătrate de aceeași dimensiune, atunci produsele AB și BA există întotdeauna. Este ușor de arătat că A × E = E × A = A, unde A este pătrat matrice, E - unitate matrice aceeași dimensiune.

Proprietățile înmulțirii matriceale:

Înmulțirea matricei nu comutativă, adică AB ≠ BA chiar dacă ambele produse sunt definite. Cu toate acestea, dacă pentru vreunul matrici relația AB=BA este satisfăcută, atunci așa matrici se numesc comutative. Cel mai tipic exemplu este unul singur matrice, care face naveta cu oricare altul matrice aceeași dimensiune. Doar cele pătrate pot fi permutabile matrici de aceeasi ordine. A × E = E × A = A

Înmulțirea matricei are următoarele proprietăți: 1. A × (B × C) = (A × B) × C; 2. A × (B + C) = AB + AC; 3. (A + B) × C = AC + BC; 4. α × (AB) = (αA) × B; 5. A × 0 = 0; 0 × A = 0; 6. (AB) T = B T A T; 7. (ABC) T = C T V T A T; 8. (A + B) T = A T + B T;

2. Determinanți ai ordinului 2 și 3. Proprietățile determinanților.

Determinant de matrice ordinul doi, sau determinant de ordinul al doilea este un număr care se calculează prin formula:

Determinant de matrice ordinul al treilea, sau determinant al treilea ordin este un număr care se calculează prin formula:

Acest număr reprezintă o sumă algebrică formată din șase termeni. Fiecare termen conține exact un element din fiecare rând și fiecare coloană matrici. Fiecare termen este format din produsul a trei factori.

Semne cu care membrii determinant al matricei incluse în formulă aflarea determinantului matricei al treilea ordin poate fi determinat folosind schema dată, care se numește regula triunghiurilor sau regula lui Sarrus. Primii trei termeni sunt luați cu semnul plus și determinați din cifra din stânga, iar următorii trei termeni sunt luați cu semnul minus și determinați din cifra din dreapta.

Determinați numărul de termeni de găsit determinant al matricei, într-o sumă algebrică, puteți calcula factorialul: 2! = 1 × 2 = 2 3! = 1 × 2 × 3 = 6

Proprietăți ale determinanților matrici

Proprietățile determinanților matricei:

Proprietatea #1:

Determinant de matrice nu se va schimba dacă rândurile sale sunt înlocuite cu coloane, fiecare rând cu o coloană cu același număr și invers (Transpunere). |A| = |A| T

Consecinţă:

Coloane și rânduri determinant al matricei sunt egale, prin urmare, proprietățile inerente rândurilor se aplică și coloanelor.

Proprietatea #2:

La rearanjarea a 2 rânduri sau coloane determinant matriceal va schimba semnul în cel opus, menținând valoarea absolută, adică:

Proprietatea #3:

Determinant de matrice având două rânduri identice este egal cu zero.

Proprietatea #4:

Factorul comun al elementelor oricărei serii determinant al matricei poate fi luat ca un semn determinant.

Corolare din proprietățile nr. 3 și nr. 4:

Dacă toate elementele unei anumite serii (rând sau coloană) sunt proporționale cu elementele corespunzătoare ale unei serii paralele, atunci așa determinant matriceal egal cu zero.

Proprietatea #5:

determinant al matricei atunci sunt egale cu zero determinant matriceal egal cu zero.

Proprietatea #6:

Dacă toate elementele unui rând sau coloană determinant prezentată ca o sumă de 2 termeni, atunci determinant matrici poate fi reprezentat ca sumă de 2 determinanți dupa formula:

Proprietatea #7:

Dacă la orice rând (sau coloană) determinant adăugați elementele corespunzătoare dintr-un alt rând (sau coloană), înmulțite cu același număr, apoi determinant matriceal nu își va schimba valoarea.

Exemplu de utilizare a proprietăților pentru calcul determinant al matricei:

Anul I, superioare matematică, studii matriciși acțiuni de bază asupra acestora. Aici sistematizăm operațiile de bază care pot fi efectuate cu matrice. De unde să începeți să vă familiarizați cu matricele? Desigur, de la cele mai simple lucruri - definiții, concepte de bază și operații simple. Vă asigurăm că matricele vor fi înțelese de toți cei care le dedică măcar puțin timp!

Definiția matricei

Matrice este un tabel dreptunghiular de elemente. Ei bine, în termeni simpli - un tabel de numere.

De obicei, matricele sunt notate cu majuscule latine. De exemplu, matrice O , matrice B și așa mai departe. Matricele pot fi de diferite dimensiuni: dreptunghiulare, pătrate și există și matrici de rânduri și coloane numite vectori. Mărimea matricei este determinată de numărul de rânduri și coloane. De exemplu, să scriem o matrice dreptunghiulară de dimensiune m pe n , Unde m – numărul de linii și n – numărul de coloane.

Articole pentru care i=j (a11, a22, .. ) formează diagonala principală a matricei și se numesc diagonală.

Ce poți face cu matricele? Adăugați/Scădeți, înmulțiți cu un număr, se inmultesc intre ele, transpune. Acum despre toate aceste operații de bază pe matrice în ordine.

Operații de adunare și scădere pe matrice

Permiteți-ne să vă avertizăm imediat că puteți adăuga doar matrici de aceeași dimensiune. Rezultatul va fi o matrice de aceeași dimensiune. Adăugarea (sau scăderea) matricelor este simplă - trebuie doar să adunați elementele corespunzătoare . Să dăm un exemplu. Să efectuăm adăugarea a două matrice A și B de mărime două câte două.

Scăderea se face prin analogie, doar cu semnul opus.

Orice matrice poate fi înmulțită cu un număr arbitrar. Pentru a face asta trebuie să înmulțiți fiecare dintre elementele sale cu acest număr. De exemplu, să înmulțim matricea A din primul exemplu cu numărul 5:

Operația de înmulțire a matricei

Nu toate matricele pot fi înmulțite împreună. De exemplu, avem două matrice - A și B. Ele pot fi înmulțite între ele numai dacă numărul de coloane ale matricei A este egal cu numărul de rânduri ale matricei B. În acest caz fiecare element al matricei rezultate, situat în rândul i și coloana j, va fi egal cu suma produselor elementelor corespunzătoare din rândul i al primului factor și coloana j a al doilea. Pentru a înțelege acest algoritm, să scriem cum sunt înmulțite două matrici pătrate:

Și un exemplu cu numere reale. Să înmulțim matricele:

Operația de transpunere a matricei

Transpunerea matricei este o operație în care rândurile și coloanele corespunzătoare sunt schimbate. De exemplu, să transpunem matricea A din primul exemplu:

Determinant de matrice

Determinant, sau determinant, este unul dintre conceptele de bază ale algebrei liniare. Cândva, oamenii au venit cu ecuații liniare, iar după ele au trebuit să vină cu un determinant. În cele din urmă, depinde de tine să te ocupi de toate acestea, deci, ultima împingere!

Determinantul este o caracteristică numerică a unei matrice pătrate, care este necesară pentru a rezolva multe probleme.
Pentru a calcula determinantul celei mai simple matrice pătrate, trebuie să calculați diferența dintre produsele elementelor diagonalei principale și secundare.

Determinantul unei matrice de ordinul întâi, adică format dintr-un element, este egal cu acest element.

Ce se întâmplă dacă matricea este trei câte trei? Acest lucru este mai dificil, dar îl puteți gestiona.

Pentru o astfel de matrice, valoarea determinantului este egală cu suma produselor elementelor diagonalei principale și a produselor elementelor situate pe triunghiuri cu o față paralelă cu diagonala principală, din care produsul dintre se scad elementele diagonalei secundare si produsul elementelor situate pe triunghiurile cu fata diagonalei secundare paralele.

Din fericire, în practică este rareori necesar să se calculeze determinanții matricilor de dimensiuni mari.

Aici ne-am uitat la operațiile de bază pe matrice. Desigur, în viața reală s-ar putea să nu întâlnești niciodată nici măcar un indiciu al unui sistem matriceal de ecuații sau, dimpotrivă, s-ar putea să întâlnești cazuri mult mai complexe când chiar trebuie să-ți faci creierul. Pentru astfel de cazuri există servicii profesionale pentru studenți. Cereți ajutor, obțineți o soluție de înaltă calitate și detaliată, bucurați-vă de succes academic și de timp liber.

Acest subiect va acoperi operațiuni precum adunarea și scăderea matricelor, înmulțirea unei matrice cu un număr, înmulțirea unei matrice cu o matrice și transpunerea unei matrice. Toate simbolurile folosite pe această pagină sunt preluate din subiectul anterior.

Adunarea și scăderea matricelor.

Suma $A+B$ a matricelor $A_(m\times n)=(a_(ij))$ și $B_(m\times n)=(b_(ij))$ se numește matrice $C_(m \times n) =(c_(ij))$, unde $c_(ij)=a_(ij)+b_(ij)$ pentru toate $i=\overline(1,m)$ și $j=\overline( 1,n) $.

O definiție similară este introdusă pentru diferența de matrice:

Diferența dintre matricele $A-B$ $A_(m\times n)=(a_(ij))$ și $B_(m\times n)=(b_(ij))$ este matricea $C_(m\times n)=( c_(ij))$, unde $c_(ij)=a_(ij)-b_(ij)$ pentru toți $i=\overline(1,m)$ și $j=\overline(1, n)$.

Explicație pentru intrarea $i=\overline(1,m)$: arată\ascunde

Notația „$i=\overline(1,m)$” înseamnă că parametrul $i$ variază de la 1 la m. De exemplu, intrarea $i=\overline(1,5)$ indică faptul că parametrul $i$ ia valorile 1, 2, 3, 4, 5.

Este de remarcat faptul că operațiile de adunare și scădere sunt definite numai pentru matrice de aceeași dimensiune. În general, adunarea și scăderea matricelor sunt operații clare intuitiv, deoarece ele înseamnă în esență doar însumarea sau scăderea elementelor corespunzătoare.

Exemplul nr. 1

Sunt date trei matrice:

$$ A=\left(\begin(array) (ccc) -1 & -2 & 1 \\ 5 & 9 & -8 \end(array) \right)\;\; B=\left(\begin(array) (ccc) 10 & -25 & 98 \\ 3 & 0 & -14 \end(array) \right); \;\; F=\left(\begin(array) (cc) 1 & 0 \\ -5 & 4 \end(array) \right). $$

Este posibil să găsim matricea $A+F$? Găsiți matrice $C$ și $D$ dacă $C=A+B$ și $D=A-B$.

Matricea $A$ conține 2 rânduri și 3 coloane (cu alte cuvinte, dimensiunea matricei $A$ este $2\xtime 3$), iar matricea $F$ conține 2 rânduri și 2 coloane. Dimensiunile matricelor $A$ și $F$ nu se potrivesc, așa că nu le putem adăuga, adică. operația $A+F$ nu este definită pentru aceste matrici.

Dimensiunile matricelor $A$ și $B$ sunt aceleași, adică. Datele matricei conțin un număr egal de rânduri și coloane, astfel încât operația de adăugare este aplicabilă acestora.

$$ C=A+B=\left(\begin(array) (ccc) -1 & -2 & 1 \\ 5 & 9 & -8 \end(array) \right)+ \left(\begin(array) ) (ccc) 10 & -25 & 98 \\ 3 & 0 & -14 \end(array) \right)=\\= \left(\begin(array) (ccc) -1+10 & -2+( -25) & 1+98 \\ 5+3 & 9+0 & -8+(-14) \end(array) \right)= \left(\begin(array) (ccc) 9 & -27 & 99 \\ 8 & 9 & -22 \end(array) \right) $$

Să găsim matricea $D=A-B$:

$$ D=A-B=\left(\begin(array) (ccc) -1 & -2 & 1 \\ 5 & 9 & -8 \end(array) \right)-\left(\begin(array) ( ccc) 10 & -25 & 98 \\ 3 & 0 & -14 \end(array) \right)=\\= \left(\begin(array) (ccc) -1-10 & -2-(-25 ) & 1-98 \\ 5-3 & 9-0 & -8-(-14) \end(array) \right)= \left(\begin(array) (ccc) -11 & 23 & -97 \ \2 & 9 & 6 \end(array) \right) $$

Răspuns: $C=\left(\begin(array) (ccc) 9 & -27 & 99 \\ 8 & 9 & -22 \end(array) \right)$, $D=\left(\begin(array) (ccc) -11 & 23 & -97 \\ 2 & 9 & 6 \end(array) \right)$.

Înmulțirea unei matrice cu un număr.

Produsul matricei $A_(m\times n)=(a_(ij))$ cu numărul $\alpha$ este matricea $B_(m\times n)=(b_(ij))$, unde $ b_(ij)= \alpha\cdot a_(ij)$ pentru toți $i=\overline(1,m)$ și $j=\overline(1,n)$.

Mai simplu spus, înmulțirea unei matrice cu un anumit număr înseamnă înmulțirea fiecărui element dintr-o matrice dată cu acel număr.

Exemplul nr. 2

Matricea este dată: $ A=\left(\begin(array) (ccc) -1 & -2 & 7 \\ 4 & 9 & 0 \end(array) \right)$. Găsiți matrice $3\cdot A$, $-5\cdot A$ și $-A$.

$$ 3\cdot A=3\cdot \left(\begin(array) (ccc) -1 & -2 & 7 \\ 4 & 9 & 0 \end(array) \right) =\left(\begin( matrice) (ccc) 3\cdot(-1) și 3\cdot(-2) și 3\cdot 7 \\ 3\cdot 4 și 3\cdot 9 și 3\cdot 0 \end(array) \right)= \left(\begin(array) (ccc) -3 & -6 & 21 \\ 12& 27 & 0 \end(array) \right).\\ -5\cdot A=-5\cdot \left(\begin (matrice) (ccc) -1 & -2 & 7 \\ 4 & 9 & 0 \end(array) \right) =\left(\begin(array) (ccc) -5\cdot(-1) & - 5\cdot(-2) & -5\cdot 7 \\ -5\cdot 4 & -5\cdot 9 & -5\cdot 0 \end(array) \right)= \left(\begin(array) ( ccc) 5 & 10 & -35 \\ -20 & -45 & 0 \end(array) \right). $$

Notația $-A$ este o notație scurtă pentru $-1\cdot A$. Adică, pentru a găsi $-A$ trebuie să înmulțiți toate elementele matricei $A$ cu (-1). În esență, aceasta înseamnă că semnul tuturor elementelor matricei $A$ se va schimba în opus:

$$ -A=-1\cdot A=-1\cdot \left(\begin(array) (ccc) -1 & -2 & 7 \\ 4 & 9 & 0 \end(array) \right)= \ stânga(\begin(array) (ccc) 1 & 2 & -7 \\ -4 & -9 & 0 \end(array) \right) $$

Răspuns: $3\cdot A=\left(\begin(array) (ccc) -3 & -6 & 21 \\ 12& 27 & 0 \end(array) \right);\; -5\cdot A=\left(\begin(array) (ccc) 5 & 10 & -35 \\ -20 & -45 & 0 \end(array) \right);\; -A=\left(\begin(array) (ccc) 1 & 2 & -7 \\ -4 & -9 & 0 \end(array) \right)$.

Produsul a două matrice.

Definiția acestei operațiuni este greoaie și, la prima vedere, neclară. Prin urmare, mai întâi voi indica o definiție generală, apoi vom analiza în detaliu ce înseamnă aceasta și cum să lucrăm cu ea.

Produsul matricei $A_(m\times n)=(a_(ij))$ de la matricea $B_(n\times k)=(b_(ij))$ este matricea $C_(m\times k )=(c_( ij))$, pentru care fiecare element $c_(ij)$ este egal cu suma produselor elementelor corespondente ale rândului i al matricei $A$ de elementele j -a coloană a matricei $B$: $$c_(ij)=\sum\limits_ (p=1)^(n)a_(ip)b_(pj), \;\; i=\overline(1,m), j=\overline(1,n).$$

Să ne uităm la înmulțirea matricei pas cu pas folosind un exemplu. Cu toate acestea, ar trebui să rețineți imediat că nu toate matricele pot fi multiplicate. Dacă dorim să înmulțim matricea $A$ cu matricea $B$, atunci trebuie mai întâi să ne asigurăm că numărul de coloane ale matricei $A$ este egal cu numărul de rânduri ale matricei $B$ (astfel de matrici sunt adesea numite convenit). De exemplu, matricea $A_(5\times 4)$ (matricea conține 5 rânduri și 4 coloane) nu poate fi înmulțită cu matricea $F_(9\times 8)$ (9 rânduri și 8 coloane), deoarece numărul de coloane ale matricei $A $ nu este egal cu numărul de rânduri ale matricei $F$, adică. $4\neq 9$. Dar puteți înmulți matricea $A_(5\times 4)$ cu matricea $B_(4\times 9)$, deoarece numărul de coloane ale matricei $A$ este egal cu numărul de rânduri ale matricei $ B$. În acest caz, rezultatul înmulțirii matricelor $A_(5\times 4)$ și $B_(4\times 9)$ va fi matricea $C_(5\times 9)$, care conține 5 rânduri și 9 coloane:

Exemplul nr. 3

Matrici date: $ A=\left(\begin(array) (cccc) -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end (matrice) \right)$ și $ B=\left(\begin(array) (cc) -9 și 3 \\ 6 și 20 \\ 7 și 0 \\ 12 și -4 \end (matrice) \right) $. Găsiți matricea $C=A\cdot B$.

Mai întâi, să determinăm imediat dimensiunea matricei $C$. Deoarece matricea $A$ are dimensiunea $3\x 4$, iar matricea $B$ are dimensiunea $4\x 2$, atunci dimensiunea matricei $C$ este: $3\x 2$:

Deci, ca rezultat al produsului matricelor $A$ și $B$, ar trebui să obținem o matrice $C$, formată din trei rânduri și două coloane: $ C=\left(\begin(array) (cc) c_ (11) și c_( 12) \\ c_(21) și c_(22) \\ c_(31) și c_(32) \end(array) \right)$. Dacă denumirile elementelor ridică întrebări, atunci puteți privi subiectul anterior: "Matrici. Tipuri de matrici. Termeni de bază", la începutul căruia se explică desemnarea elementelor matricei. Scopul nostru: găsiți valorile tuturor elementelor matricei $C$.

Să începem cu elementul $c_(11)$. Pentru a obține elementul $c_(11)$, trebuie să găsiți suma produselor elementelor din primul rând al matricei $A$ și prima coloană a matricei $B$:

Pentru a găsi elementul $c_(11)$ în sine, trebuie să înmulțiți elementele primului rând al matricei $A$ cu elementele corespunzătoare din prima coloană a matricei $B$, adică. primul element la primul, al doilea la al doilea, al treilea la al treilea, al patrulea la al patrulea. Rezumam rezultatele obtinute:

$$ c_(11)=-1\cdot (-9)+2\cdot 6+(-3)\cdot 7 + 0\cdot 12=0. $$

Să continuăm soluția și să găsim $c_(12)$. Pentru a face acest lucru, va trebui să înmulți elementele din primul rând al matricei $A$ și din a doua coloană a matricei $B$:

Similar cu precedentul, avem:

$$ c_(12)=-1\cdot 3+2\cdot 20+(-3)\cdot 0 + 0\cdot (-4)=37. $$

Toate elementele primului rând al matricei $C$ au fost găsite. Să trecem la a doua linie, care începe cu elementul $c_(21)$. Pentru a-l găsi, va trebui să înmulți elementele celui de-al doilea rând al matricei $A$ și prima coloană a matricei $B$:

$$ c_(21)=5\cdot (-9)+4\cdot 6+(-2)\cdot 7 + 1\cdot 12=-23. $$

Găsim următorul element $c_(22)$ înmulțind elementele celui de-al doilea rând al matricei $A$ cu elementele corespunzătoare din a doua coloană a matricei $B$:

$$ c_(22)=5\cdot 3+4\cdot 20+(-2)\cdot 0 + 1\cdot (-4)=91. $$

Pentru a găsi $c_(31)$, înmulțiți elementele celui de-al treilea rând al matricei $A$ cu elementele primei coloane a matricei $B$:

$$ c_(31)=-8\cdot (-9)+11\cdot 6+(-10)\cdot 7 + (-5)\cdot 12=8. $$

Și, în final, pentru a găsi elementul $c_(32)$, va trebui să înmulțiți elementele celui de-al treilea rând al matricei $A$ cu elementele corespunzătoare din a doua coloană a matricei $B$:

$$ c_(32)=-8\cdot 3+11\cdot 20+(-10)\cdot 0 + (-5)\cdot (-4)=216. $$

Toate elementele matricei $C$ au fost găsite, tot ce rămâne să scriem că $C=\left(\begin(array) (cc) 0 & 37 \\ -23 & 91 \\ 8 & 216 \end( matrice) \right)$ . Sau, pentru a scrie integral:

$$ C=A\cdot B =\left(\begin(array) (cccc) -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & - 5 \end(array) \right)\cdot \left(\begin(array) (cc) -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end(array) \right) =\left(\begin(array) (cc) 0 & 37 \\ -23 & 91 \\ 8 & 216 \end(array) \right). $$

Răspuns: $C=\left(\begin(array) (cc) 0 & 37 \\ -23 & 91 \\ 8 & 216 \end(array) \right)$.

Apropo, adesea nu există niciun motiv pentru a descrie în detaliu locația fiecărui element al matricei rezultate. Pentru matricele a căror dimensiune este mică, puteți face acest lucru:

De asemenea, este de remarcat faptul că înmulțirea matricei este necomutativă. Aceasta înseamnă că în cazul general $A\cdot B\neq B\cdot A$. Numai pentru unele tipuri de matrice, care sunt numite permutabil(sau naveta), egalitatea $A\cdot B=B\cdot A$ este adevărată. Pe baza necomutativității înmulțirii trebuie să indicăm exact cum înmulțim expresia cu o anumită matrice: în dreapta sau în stânga. De exemplu, expresia „înmulțiți ambele părți ale egalității $3E-F=Y$ cu matricea $A$ din dreapta” înseamnă că doriți să obțineți următoarea egalitate: $(3E-F)\cdot A=Y\cdot A$.

Transpusă față de matricea $A_(m\times n)=(a_(ij))$ este matricea $A_(n\times m)^(T)=(a_(ij)^(T))$, pentru elementele care $a_(ij)^(T)=a_(ji)$.

Mai simplu spus, pentru a obține o matrice transpusă $A^T$, trebuie să înlocuiți coloanele din matricea originală $A$ cu rândurile corespunzătoare conform acestui principiu: a existat un prim rând - va fi o primă coloană ; a existat un al doilea rând - va fi o a doua coloană; a fost un al treilea rând - va fi o a treia coloană și așa mai departe. De exemplu, să găsim matricea transpusă în matricea $A_(3\times 5)$:

În consecință, dacă matricea originală a avut o dimensiune de $3\times 5$, atunci matricea transpusă are o dimensiune de $5\times 3$.

Unele proprietăți ale operațiilor pe matrice.

Aici se presupune că $\alpha$, $\beta$ sunt niște numere și $A$, $B$, $C$ sunt matrici. Pentru primele patru proprietăți am indicat nume, restul pot fi numite prin analogie cu primele patru.

  1. $A+B=B+A$ (comutativitatea adunării)
  2. $A+(B+C)=(A+B)+C$ (asociativitatea adunării)
  3. $(\alpha+\beta)\cdot A=\alpha A+\beta A$ (distributivitatea înmulțirii cu o matrice în raport cu adunarea numerelor)
  4. $\alpha\cdot(A+B)=\alpha A+\alpha B$ (distributivitatea înmulțirii cu un număr relativ la adăugarea matricei)
  5. $A(BC)=(AB)C$
  6. $(\alpha\beta)A=\alpha(\beta A)$
  7. $A\cdot (B+C)=AB+AC$, $(B+C)\cdot A=BA+CA$.
  8. $A\cdot E=A$, $E\cdot A=A$, unde $E$ este matricea de identitate a ordinului corespunzător.
  9. $A\cdot O=O$, $O\cdot A=O$, unde $O$ este o matrice zero de dimensiunea corespunzătoare.
  10. $\left(A^T \dreapta)^T=A$
  11. $(A+B)^T=A^T+B^T$
  12. $(AB)^T=B^T\cdot A^T$
  13. $\left(\alpha A \right)^T=\alpha A^T$

În partea următoare, vom lua în considerare operația de ridicare a unei matrici la o putere întreagă nenegativă și vom rezolva, de asemenea, exemple în care este necesar să se efectueze mai multe operații pe matrice.