Открытый урок по физике полупроводники. Урок физики на тему "Полупроводники

Тема: Полупроводники.

Цель и задачи урока:

· Образовательная: сформировать в сознании учащихся первоначальные понятия об электрических свойствах полупроводников.

· Воспитательная: продолжить воспитание культуры умственного труда, развитие качеств личности - настойчивость, целеустремленность, творческую активность, самостоятельность.

· Развивающая: расширить научное мировоззрение учащихся на каждодневно наблюдаемые ими явления.

Оборудование и наглядные пособия:

Источник питания, полупроводниковые диоды, электролампочки, провода соединительные, демонстрационный стенд, электроизмерительный прибор - тестер, информационные плакаты.

Ход урока:

1. Организационный момент: (Задача: создание благоприятного психологического настроя и активация внимания).

2. Подготовка к повторению и обобщению пройденного материала:

Условно-графические обозначения радиоэлементов.

Что такое электрический ток?

Сила тока, единицы измерения.

Класс разбивается на команды и проводится конкурс - кто больше нарисует условно-графических обозначений радиоэлементов и объяснит их назначение.

Сообщение темы и цели занятия.

Полупроводники. Мы должны сформировать первоначальные понятия об электрических свойствах полупроводников.

Объяснение перспективы.

Полупроводники в виде различных электронных приборов присутствуют во всех сторонах нашей жизни. Кто может назвать конкретные применения полупроводников?

(Возможные ответы: светодиодные светофоры, лазерная указка, компьютеры, телевизоры, фотоаппараты, телекамеры, домофоны, стиральные машины, и пр.)

Можно сказать, что изучение и использование полупроводников оказывает существенное влияние на содержание и качество нашей жизни. Рассмотрим по порядку, что собой представляют полупроводники, какими свойствами обладают, и какие полупроводниковые приборы на их основе созданы, какие занимательные опыты можно провести с ними.

3. Основной этап.

Новый материал

Все вещества, встречающиеся в природе, по своим электропроводным свойствам делятся на три группы:

Ш Проводники,

Ш изоляторы (диэлектрики),

Ш полупроводники

фронтальный опрос:

Вопрос: "Почему металлы хорошо проводят электрический ток, а диэлектрики, практически, не проводят?"

Ответ: "в проводниках имеется большое количество свободных электронов, а в диэлектриках их нет.

Вопрос: "Разве в диэлектриках нет электронов?"

Ответ: "Электронов там не меньше чем в металлах, но они связаны с атомами и не могут двигаться по объему образца."

Правильно.

Вопрос электропроводности материала - это вопрос о наличии в нем свободных, т.е. способных передвигаться электрических зарядов. По этому показателю полупроводники занимают промежуточное положение между проводниками и диэлектриками.

К полупроводникам относится элементы 4 группы таблицы Менделеева, а также некоторые химические соединения. Особенно удобным для использования материалом является кремний (Si). Валентные электроны полупроводника подобно диэлектрику связаны со своими атомами, но эта связь не столь сильна, как в диэлектриках. При комнатной температуре энергии тепловых колебаний достаточно для того, чтобы некоторые из валентных электронов оторвались от своих атомов и стали свободными внутри полупроводникового образца. В результате полупроводниковый образец приобретает т.н. электронную электропроводность.

Уход части валентных электронов от своих атомов порождает второй механизм электропроводности полупроводников, который называется дырочной электропроводностью. Дело в том, что на вакантное место освободившегося электрона может перейти валентный электрон соседнего атома. В результате вакансия, которую назвали дырка, может передвигаться по объему образца и переносить электрический заряд. Фактически движение и эстафетный перенос заряда осуществляют валентные электроны, но введение воображаемой частицы с элементарным положительным зарядом - дырки оказалось очень удобным и прочно вошло в физику полупроводников.

Свободные электроны, покинувшие свои атомы, создают n- проводимость (n - первая буква латинского слова negativus - отрицательный). Дырки создают в полупроводнике р - проводимость (р - первая буква латинского слова positivus- положительный).-дается под запись.

В чистом полупроводнике число свободных электронов и дырок одинаково.

Добавляя примеси, можно получить полупроводник с преобладанием электронной или дырочной проводимостью.

Если в 4-х валентный кристалл кремния добавить 5-ти валентный мышьяк (сурьму) то получим n - проводник.

При добавлении 3-х валентного индия, получим р - проводник.

Ничтожного количества примеси достаточно для изменения концентрации свободных электронов или дырок на несколько порядков. Поэтому свободные носители заряда, образующиеся за счет примеси, называются основными, собственные свободные носители заряда полупроводника - неосновными.

Контакт электронного и дырочного полупроводников (p-n-переход).

Если просто привести в соприкосновение два отдельных полупроводниковых образца с р и n проводимостью, то ток через это соединение на пойдет. Полупроводниковые образцы на воздухе покрываются окисной пленкой, которая является отличным диэлектриком. Контакт электронного и дырочного полупроводников создается внутри единого образца. Для этого, например полупроводник с дырочной электропроводностью на одной из поверхностей легируется донорной примесью. В результате тип электропроводности у поверхности становится электронным, а в глубине сохраняется дырочная проводимость. Следовательно, возникает p-n-переход, схематично изображенный на рисунке.

Тепловое движение дырок в р-области и свободных электронов в n-области будет приводить к их преимущественному перемещению из областей большой концентрации в области с меньшими концентрациями. Этот процесс называется диффузией (под запись). В результате дырки из р-области устремятся в n-область, а свободные электроны - из n-области в р. Т.е. возникает направленное движение заряженных частиц, которое является электрическим током. Поскольку данный ток обусловлен диффузией, он называется диффузионным. При этом перешедшие в р-область электроны оказываются захваченными атомами акцепторной примеси, а перешедшие в n-область дырки есть не что иное, как валентные электроны донорной примеси

Примыкающая к границе перехода сторона р-области заряжается отрицательно, а n-области - положительно. Все эти процессы происходят еще при создании перехода. В результате на переходе возникает т.н. контактная разность потенциалов, которая действует против диффузионного тока и уменьшает его почти до нуля.

Электронно-дырочный переход в электрической цепи.

Поставим следующий опыт, Включим электронно-дырочный переход последовательно в простую цепь, которая состоит их источника постоянной ЭДС и лампочки.

Когда плюсовая клемма источника ЭДС подключена к р-области, а минусовая через лампочку - к n, в цепи течет сильный ток, о котором свидетельствует свечение лампочки. При обратной полярности включения перехода тока в цепи нет. Этот опыт говорит о том, что переход обладает односторонней проводимостью. Определим механизм этого эффекта.

В первом случае, когда положительный полюс источника подсоединен к р-области, и минус - к n-области, напряжение внешнего источника противоположно по полярности контактному напряжению. Следовательно, суммарное напряжение на переходе уменьшается, в сравнении с равновесным состоянием. Противодействие этого напряжения диффузионному току уменьшается, и этот ток сильно увеличивается.

Во втором случае внешнее напряжение совпадает по полярности с контактным. При этом суммарное напряжение увеличивается, что приводит к ослаблению диффузионного тока. Поскольку этот ток и без того был ослаблен почти до нуля контактным напряжением, он остается практически нулевым.

Таким образом, односторонняя проводимость p-n-перехода обусловлена однонаправленностью диффузионного тока через переход. Что же касается дрейфового тока, то он всегда близок к нулю, так как определяется очень малыми концентрациями неосновных носителей в р и n областях.

Полярность внешнего напряжения на переходе, при которой он пропускает ток, и сам ток в этом случае называются прямыми, притивополжная полярность напряжения и ток - обратными.

Односторонняя проводимость p-n-перехода отражается в его условных обозначениях. Во всех случаях изображается контакт и стрелка, показывающая направление пропускания тока - от р-области к n (под запись).

Закрепление материала. Фронтальный опрос.

1. Какие материалы относятся к полупроводникам?

2. Поясните механизм собственной электропроводности полупроводников?

3. Каким образом примесь увеличивает электропроводность полупроводника.

4. Поясните механизм образования электронной примесной электропроводности.

5. Поясните механизм образования дырочной примесной электропроводности.

6. Что такое p-n-перход, как его изготавливают,

7. Объясните одностороннюю проводимость p-n-перехода.

Домашнее задание: повторить пройденный материал. Подумать над решением следующей задачи:


Люстра имеет две лампочки. Обычно для независимого их включения и выключения используется три провода, идущих от выключателей к люстре. Можно ли, используя одностороннюю электропроводность p-n-переходов, обойтись только двумя проводами, если собрать цепь, показанную на рисунке.

(Ответ: Да можно, выключатель А управляет лампочкой а, выключатель Б - лампочкой б)

Демонстрация изменения сопротивления полупроводника при освещении

Установку собирают с фоторезистором по рисунку. Замыкают ключ и замечают показание гальванометра (2--4дел.). Включают электрическую лампу, находящуюся на расстоянии 0,5м от фоторезистора, и медленно ее приближают к фоторезистору, следят за показанием гальванометра. Обращают внимание учащихся, что при освещении возрастает проводимость, а значит, уменьшается сопротивление.

ТАБЛИЦА 2


Календарно-тематический план

Календарно-тематический план – планирующее учетный документ, его целями является определение тематики, тип метода и оснащение уроков по выбранному предмету. Составление календарно-тематического плана является первым шагом создания поурочной систематизации. Исходным документом здесь является учебная программа. Календарно тематический план предусматривает межпредметные связи. При соответствии календарно-тематического плана учебной программе ориентируются на тематический план при составлении поурочного плана. Календарно-тематический план (см. таблицу 3).

Разработка урока

Изучая учебную программу, преподаватель внимательно анализирует каждую тему, что дает возможность четко определить содержание обучения, установить межпредметные связи. На основе учебной программы составляется календарно-тематический план и уже на основе календарно-тематического плана составляется поурочный план. При определении цели и содержания урока, вытекающей из учебной программы, определяется содержание записи, умений и навыков, которые учащиеся должны усвоить на данном уроке. Анализируя предыдущие уроки, и устанавливая в какой мере решены их задачи, выясняют причину недочетов, и на основе этого определяют какие изменения необходимо внести в проведения данного урока. Намечают структуру урока и время на каждую ее часть, формируют содержание и характер воспитательной работы во время урока.


План урока

Предмет: Материаловедение и электрорадиоматериалы Группа 636

Тема: Классификация и основные свойства

а) обучающая: Познакомить учащихся с понятиями и основными свойствами проводниковых материалов, рассказать о их предназначений

б) развивающая: Развить интерес к материаловедению и электрорадиоматериалам

в) воспитательная: Выработать потребность в самообразовании

Тип урока: Комбинированный

Метод изложения: поисковый

Наглядные пособия: плакат № 1, ПК

Время: 90 мин.

Ход урока

I . Вводная часть:

1. Организационный момент: проверка по рапортичке время 2 мин.

2. Проверка домашнего задания: время 15 мин.

Письменный опрос по двум вариантам + 3 уч-ся у доски (приложение1)

II . Основная часть:

1. Сообщение цели новой темы

2. Изложение нового материала время 40 мин.

а) Основные понятия

б) Классификация проводников

в) Сфера применения

3. Ответы на вопросы учащихся время 10 мин.

4. Закрепление нового материала время 20 мин.

Письменный опрос по 2 вариантам + 3 уч-ся у доски (приложение 2)

III . Заключительная часть: время 3 мин.

1. Подведение итогов

2. Задание на дом: стр. 440 ответы на вопросы, самостоятельно рассмотреть темы № 2, 3, 4, 5

3. Заключительное слово преподавателя

Преподаватель

Список литературы

1. Лахтин Ю. М., Леонтьева В. П. Материаловедение. - М.: Машиностроение, 1990 г.

2. Технологические процессы машиностроительного производства. Под редакцией С. И. Богодухова, В. А Бондаренко. - Оренбург: ОГУ, 1996 г.

Приложение 1

ПИСЬМЕННЫЙ ОПРОС по 2-м вариантам

Вариант 1

1 . Что изучает предмет материаловедение.

2. Виды металлов.

3. Классификация металлов

4. Аллотропическое превращение

5 . Свойства металлов

Вариант 2

1. Определение твердости металлов

2. Механические свойства

3. Пластичность

4. Выносливость

5. Технологические свойства

Приложение 2

Письменный опрос

1 – вариант

1. Полупроводниковые материалы

2. Сверхпроводники

3. Криопроводники

4. Характеристики полупроводниковых материалов

5. Упругость материалов

2 – вариант

1. Полупроводниковые материалы.

2. Диэлектрические материалы

3. Пластичность

4. Упругость

5. Сверхпроводники

Приложение 3

Конспект урока на тему "Проводниковые материалы"

Возрастание роли техники и технического знания в жизни общества характеризуется зависимостью науки от научно-технических разработок, усиливающейся технической оснащенностью, созданием новых методов и подходов, основанных на техническом способе решения проблем в разных областях знания, в том числе и военно-техническом знании. Современное понимание технического знания и технической деятельности связывается с традиционным кругом проблем и с новыми направлениями в технике и инженерии, в частности с техникой сложных вычислительных систем, проблемами искусственного интеллекта, системотехникой и др.

Спецификация понятий технического знания обуславливается в первую очередь спецификой предмета отражения технических объектов и технологических процессов. Сравнение объектов технического знания с объектами иного знания показывает их определенную общность, распространяющуюся, в частности, на такие черты, как наличие структурности, системности, организованности и т.д. Такие общие черты отражаются общенаучными понятиями "свойство", "структура", "система", "организация" и т.п. Разумеется, общие черты объектов технического, военно-технического, естественнонаучного и общественно-научного знания отражаются такими философскими категориями "материя", "движение", "причина", "следствие" и др. Общенаучные и философские понятия употребляются и военных и в технических науках, но не выражают их специфики. Вместе с тем они помогают глубже, полнее осмыслить содержание объектов технического, военно-технического знания и отражающих их понятий технических наук.

Вообще философские и общенаучные понятия в технических науках выступают в роли мировоззренческих и методологических средств анализа и интеграции научно-технического знания.

Технический объект - это, несомненно, часть объективной реальности, но часть особая. Его возникновение и существование связаны с социальной формой движения материи, историей человека. Это определяет исторический характер технического объекта. В нем объективируются производственные функции общества, он выступает воплощением знаний людей.

Возникновение техники - это естественноисторический процесс, результат производственной деятельности человека.

Ее исходным моментом являются "органы человека". Усиление, дополнение и замещение рабочих органов - социальная необходимость, реализуемая путем использования природы и воплощения в преобразуемых природных телах трудовых функций.

Формирование техники протекает в процессе изготовления орудий, приспособления природных тел для достижения цели. И ручное рубило, и ствол дерева, выполняющий функцию моста и т.п. - все это средства усиления индивида, повышения эффективности его деятельности. Природный предмет, выполняющий техническую функцию, - это уже в потенции технический объект. В нем зафиксирована целесообразность его устройства и полезность конструктивных улучшений за счет подработки его частей.

Практическое выделение конструкции как целостности свидетельствует об актуальном существовании технического объекта. Ее важнейшими свойствами являются функциональная полезность, необычное для природы сочетание материалов, подчиненность свойств материала отношению между компонентами системы. Техническая конструкция представляет собой соединение компонентов; этот порядок обеспечивает как можно более продолжительное и эффективное функционирование орудия, исключающее его саморазрушение. Компонентом конструкции выступает деталь как исходная и неделимая для нее единица. И, наконец, с помощью технической конструкции способ общественной деятельности достигает технологичности. Технология - это та сторона общественной практики, которая представлена взаимодействием технического средства и преобразуемого объекта, определяется законами материального мира и регулируется техникой.

Техническая практика обнаруживает себя в отношении человека к технике как объекту, к ее частям и их связям.

Эксплуатация, изготовление и конструирование тесно связаны друг с другом и представляют собой своеобразное развитие технической практики. В качестве объекта эксплуатации техника выступает как некоторая материальная и функциональная целостность, сохранение и регулирование которой - непременное условие ее использования. Движущим противоречием эксплуатации является несоответствие между условиями функционирования техники и ее функциональными особенностями. Функциональные особенности предполагают постоянство условий эксплуатации, а условия эксплуатации имеют тенденцию меняться.

Преодоление этого противоречия достигается в технологии, в нахождении типовых технологических операций.

УРОК 10/10

Тема. Электрический ток в полупроводниках

Цель урока: сформировать представление о свободных носителях электрического заряда в полупроводниках и о природе электрического тока в полупроводниках.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

1. Электрический ток в металлах.

2. Электрический ток в электролитах.

3. Закон Фарадея для электролиза.

4. Электрический ток в газах

Демонстрации

Фрагменты видеофильма «Электрический ток в полупроводниках»

Изучение нового материала

1. Носители зарядов в полупроводниках.

2. Примесная проводимость полупроводников.

3. Электронно-дырочный переход.

4. Полупроводниковые диоды и транзисторы.

5. Интегральные микросхемы

Закрепление изученного материала

1. Качественные вопросы.

2. Учимся решать задачи

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Удельные сопротивления полупроводников при комнатной температуре имеют значения, которые находятся в широком интервале, т. е. от 10-3 до 107 Ом·м, и занимают промежуточное положение между металлами и диэлектриками.

Ø Полупроводники - вещества, удельное сопротивление которых очень быстро убывает с повышением температуры.

К полупроводникам относятся многие химические элементы (бор, кремний, германий, фосфор, мышьяк, селен, теллур и др.), огромное количество минералов, сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира - полупроводники.

За достаточно низких температур и отсутствия внешних воздействий (например, освещения или нагрев) полупроводники не проводят электрический ток: при этих условиях все электроны в полупроводниках являются связанными.

Однако связь электронов со своими атомами в полупроводниках не такой крепкий, как в диэлектриках. И в случае повышения температуры, а так же за яркого освещения некоторые электроны отрываются от своих атомов и становятся свободными зарядами, то есть могут перемещаться по всему образцу.

Благодаря этому в полупроводниках появляются отрицательные носители заряда - свободные электроны.

Ø Проводимость полупроводника, обусловленная движением электронов, называют электронной.

Когда электрон отрывается от атома, положительный заряд этого атома становится некомпенсированным, то есть в этом месте появляется лишний положительный заряд. Этот положительный заряд называют «дыркой». Атом, вблизи которого образовалась дырка, может отобрать связанный электрон у соседнего атома, при этом дырка переместится до соседнего атома, а атом, в свою очередь, может «передать» дырку дальше.

Такое «естафетне» перемещение связанных электронов можно рассматривать как перемещение дырок, то есть положительных зарядов.

Ø Проводимость полупроводника, обусловленная движением дырок, называют дырочной.

Таким образом, различие дырочной проводимости от электронной заключается в том, что электронная проводимость обусловлена перемещением в полупроводниках свободных электронов, а дырочная - перемещением связанных электронов.

Ø В чистом полупроводнике (без примесей) электрический ток создает одинаковое количество свободных электронов и дырок. Такую проводимость называют собственной проводимостью полупроводников.

Если добавить в чистый расплавленный кремний незначительное количество мышьяка (примерно 10-5 %), после твердения образуется обычная кристаллическая решетка кремния, но в некоторых узлах решетки вместо атомов кремния будут находиться атомы мышьяка.

Мышьяк, как известно, пятивалентный элемент. Чотиривалентні электроны образуют парные электронные связи с соседними атомами кремния. Пятом же валентному электрону связи не хватит, при этом он будет слабо связан с атомом Мышьяка, который легко становится свободным. В результате каждый атом примеси даст один свободный электрон.

Ø Примеси, атомы которых легко отдают электроны, называются донорными.

Электроны из атомов кремния могут становиться свободными, образуя дыру, поэтому в кристалле могут одновременно существовать и свободные электроны и дырки. Однако свободных электронов во много раз будет больше, чем дырок.

Полупроводники, в которых основными носителями зарядов являются электроны, называют полупроводниками n -типа.

Если в кремний добавить незначительное количество трехвалентного индия, то характер проводимости полупроводника изменится. Поскольку индий имеет три валентных электрона, то он может установить ковалентная связь только с тремя соседними атомами. Для установки связи с четвертым атомом электрона не хватит. Индий «одолжит» электрон у соседних атомов, в результате каждый атом Индия образует одно вакантное место - дырку.

Ø Примеси, которые «захватывают» электроны атомов кристаллической решетки полупроводников, называются акцепторными.

В случае акцепторной примеси основными носителями заряда при прохождении электрического тока через полупроводник есть дыры. Полупроводники, в которых основными носителями зарядов являются дырки, называют полупроводниками р -типа.

Практически все полупроводники содержат и донорные, и акцепторные примеси. Тип проводимости полупроводника определяет примесь с более высокой концентрацией носителей заряда - электронов и дырок.

Следовательно, через границу раздела полупроводников n -типа и р-типа электрический ток идет только в одном направлении - от полупроводника p -типа к полупроводнику n -типа.

Это используют в устройствах, которые называют диодами.

Полупроводниковые диоды используют для выпрямления переменного тока направлении (такой ток называют переменным), а также для изготовления светодиодов. Полупроводниковые выпрямители имеют высокую надежность и длительный срок использования.

Широко применяют полупроводниковые диоды в радиотехнических устройствах: радиоприемниках, видеомагнитофонах, телевизорах, компьютерах.

Еще более важным применением полупроводников стал транзистор. Он состоит из трех слоев полупроводников: по краям расположены полупроводники одного типа, а между ними - тонкий слой полупроводника другого типа. Широкое применение транзисторов обусловлено тем, что с их помощью можно усиливать электрические сигналы. Поэтому транзистор стал основным элементом многих полупроводниковых приборов.

Полупроводниковые диоды и транзисторы являются «кирпичиками» очень сложных устройств, которые называют интегральными микросхемами.

Микросхемы «работают» сегодня в компьютерах и телевизорах, в мобильных телефонах и искусственных спутниках, в автомобилях, самолетах и даже в стиральных машинах. Интегральную схему изготавливают на пластинке кремния. Размер пластинки - от миллиметра до сантиметра, причем на одной такой пластинке может размещаться до миллиона компонентов - крошечных диодов, транзисторов, резисторов и т. др.

Важными преимуществами интегральных схем является высокое быстродействие и надежность, а также низкая стоимость. Именно благодаря этому на основе интегральных схем и удалось создать сложные, но доступные многим приборы, компьютеры и предметы современной бытовой техники.

ВОПРОСЫ К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. Какие вещества можно отнести к полупроводниковым?

2. Движением каких заряженных частиц создается ток в полупроводниках?

3. Почему сопротивление полупроводников очень сильно зависит от наличия примесей?

4. Как образуется p -n -переход? Какое свойство имеет p -n -переход?

5. Почему свободные носители зарядов не могут пройти сквозь p -n -переход полупроводника?

Второй уровень

1. После введения в германий примеси мышьяка концентрация электронов проводимости увеличилась. Как изменилась при этом концентрация дырок?

2. С помощью какого опыта можно убедиться в односторонней проводимости полупроводникового диода?

3. Можно ли получить р-n -переход, выполнив вплавления олова в германий или кремний?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Какую проводимость (электронную или дырочную) имеет кремний с примесью галлия? индию? фосфора? сурьмы?

2. Какая проводимость (электронная или дырочная) будет в кремния, если к нему добавить фосфор? бор? алюминий? мышьяк?

3. Как изменится сопротивление образца кремния с примесью фосфора, если ввести в него примесь галлия? Концентрация атомов Фосфора и Галлия одинакова. (Ответ: увеличится)

ЧТО МЫ УЗНАЛИ НА УРОКЕ

· Полупроводники - вещества, удельное сопротивление которых очень быстро снижается с повышением температуры.

· Проводимость полупроводника, обусловленная движением электронов, называют электронной.

· Проводимость полупроводника, обусловленная движением дырок, называют дырочной.

· Примеси, атомы которых легко отдают электроны, называются донорными.

· Полупроводники, в которых основными носителями зарядов являются электроны, называют полупроводниками n -типа.

· Примеси, которые «захватывают» электроны атомов кристаллической решетки полупроводников, называются акцепторными.

· Полупроводники, в которых основными носителями зарядов являются дырки, называют полупроводниками р-типа.

· Контакт двух полупроводников с различными видами проводимости имеет свойства хорошо проводить ток в одном направлении и значительно хуже в противоположном направлении, то есть имеет одностороннюю проводимость.

Рів1 № 6.5; 6.7; 6.15; 6.17.

Рів2 № 6.16; 6.18; 6.24, 6.25.

Рів3 № 6.26, 6.28; 6.29; 6.30.

3. Д: подготовиться к самостоятельной работе № 4.

Объясняет особенности.

Полупроводники — вещества, способные, как проводить электрический ток, так и препятствовать его прохождению. Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, а так же всевозможные сплавы и химические соединения н-р окись меди). Почти все вещества окружающего нас мира являются полупроводниками. Самым распространенным в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры. Для изготовления полупроводниковых приборов используют в основном только кремний и германий. (найдите их в таблице Д. И. Менделеева — Приложение 2). Какую валентность они имеют (в таблице Д. И. Менделеева найдите номер столбца в котором они находятся)?

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока. Запишите в тетрадь определение что такое полупроводник.

Рассмотрим следующие три опыта (демонстрация или плакаты)

Первый опыт: Нагревание полупроводника


Посмотрите, что происходит при увеличении температуры? Сопротивление будет уменьшаться при увеличении температуры?

Какой вывод можно сделать?

Электропроводность полупроводников сильно зависит от окружающей температуры. При очень низкой температуре, близкой к абсолютному нулю (-273), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается. На основе этого были созданы термоэлектрические приборы.

Термисторы. В полупроводниках электрическое сопротивление очень сильно зависит от температуры. Это свойство используют для измерения температуры по силе тока в цепи с полупроводником. Такие приборы называют термисторами или терморезисторами.

Термисторы — одни из самых простых полупроводниковых приборов. Выпускают термисторы в виде стержней, трубок, дисков, шайб и бусинок размером от нескольких микрометров до нескольких сантиметров.

Диапазон измеряемых температур большинства термисторов лежит в интервале от 170 до 570 К. Но существуют термисторы для измерения как очень высоких (примерно 1300 К), так и очень низких (примерно 4 — 80 К) температур. Термисторы применяются для дистанционного измерения температуры, противопожарной сигнализации и т. д.

Второй опыт: Освещение светом полупроводника



Посмотрите, что происходит при увеличении освещенности?

Какой вывод можно сделать?

Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи.

Фоторезисторы. Электрическая проводимость полупроводников овышается не только при нагревании, но и при освещении.

Можно заметить, что при освещении полупроводника сила тока в цепи заметно возрастает. Это указывает на увеличение проводимости (уменьшение сопротивления) полупроводников под действием света. Данный эффект не связан с нагреванием, так как может наблюдаться и при неизменной температуре.

Электрическая проводимость возрастает вследствие разрыва связей и образования свободных электронов и дырок за счет энергии света, падающего на полупроводник. Это явление называют фотоэлектрическим эффектом.

Приборы, в которых используют фотоэлектрический эффект в полупроводниках, называют фоторезисторами или фотосопротивлениями. Миниатюрность и высокая чувствительность фоторезисторов позволяют использовать их в самых различных областях науки и техники для регистрации и измерения слабых световых потоков. С помощью фоторезисторов определяют качество поверхностей, контролируют размеры изделий и т. д.

Третий опыт: Добавление примеси в полупроводник

Посмотрите, что происходит?

Какой вывод можно сделать?

При введении в полупроводник примесей определенных веществ их электропроводность резко увеличивается.

Запишем в тетрадь свойства полупроводников

Электропроводность повышается при повышении температуры (терморезистор)

Электропроводность повышается при освещении (фоторезистор, солнечные батареи)

Электропроводность повышается при введении в полупроводник некоторых примесей. (полупроволниковый диод)

Свойства полупроводников зависят от их внутреннего строения. Рассмотрим кремний — четырехвадентный элемент (показать трехмерную модель) т. е. во внешней оболочке атома имеются четыре электрона, слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырем.

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью. В образовании этой связи от каждого атома участвует по одному валентному электрону. Атомы расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Зарисуем получившуюся картинку в тетрадь.(рисунок на доске) Студенты выполняют такой же рисунок в тетради. Добавим больше соседних атомов.


При нагревании кремния кинетическая энергия частиц повышается, и наступает разрыв отдельных связей. Некоторые электроны становятся свободными и перемещаются между узлами решетки, образуя электрический ток. Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют, электронной проводимостью. При разрыве связи образуется вакантное место с недостающим электроном — дырка.

При низких температурах связи не разрываются, поэтому кремний при низких температурах не проводит электрический ток.

Проводимость чистых полупроводников, без примесей (собственная проводимость) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места парноэлектронных связей (дырочная проводимость). Проводимость полупроводников чрезвычайно сильно зависит от примесей. Именно эта зависимость сделала полупроводники тем, чем они стали в современной технике. Различают донорные и акцепторные примеси. При наличии донорной примеси в полупроводнике, если в кремний добавить мышьяк, наблюдается избыток электронов, полупроводник называется n -типа, при наличии акцепторных примесей, если в кремний добавить индий, наблюдается избыток дырок, полупроводник называется р-типа.

ПЛАН-КОНСПЕКТ УРОКА

Раздел 2 Тема 2.5 Полупроводниковые приборы

(Тема урока)

ФИО (полностью)

Дилигенская Юлия Владимировна

Место работы

БПОУ ВО «Череповецкий лесомеханический техникум им. В.П. Чкалова»

Должность

Преподаватель

Профессиональный модуль ПМ 01. Организация технического обслуживания и ремонта электрического и электромеханического оборудования

МДК 01.05 Типовые электрические схемы и функциональные узлы электронных и вычислительных устройств

ЭЛЕМЕНТЫ ЭЛЕКТРОННЫХ СХЕМ

  1. Литература

Основная

1.Тугов Н. М. , Глебов Б.А., Чарыков Н.А.Полупроводниковые приборы- М.: Издательский центр «Академия,» 2004.-240 с

2.Миклашевский С.П., Промышленные элементы электронных схем. М: Высшая школа, 2006- 214 с.

Справочная

1.Диоды, транзисторы, оптоэлектронные приборы: Справочник , М.: Издательский центр «Академия,» 2005

2. Дидактический материал по общей электротехнике с основами электроники, Учебное пособие- М: Высшая школа. 2006 – 108 с

5.Цель урока:

Ознакомить обучающихся с разновидностями полупроводниковых приборов;

Дать представление о функциональном назначении каждого прибора;

Показать практическое значение полупроводниковых приборов в специальности.

6. Задачи:

- обучающие

помочь студентам изучить классификацию полупроводниковых приборов;.

-развивающие

развивать познавательный интерес студентов.

-воспитательные

воспитать информационную культуру студентов.

7.Тип урока – усвоения новых знаний

8.Формы работы учащихся – индивидуальная и групповая.

9.Необходимое техническое оборудование – мультимедийный компьютер преподавателя, видеопроектор,

    Структура и ход урока

Таблица 1.

ТЕХНОЛОГИЧЕСКАЯ КАРТА УРОКА

Этап урока

Название используемых ЭОР

(с указанием порядкового номера из Таблицы 2)

Деятельность преподавателя

Деятельность студента

Время

(в мин.)

Организационно-мотивационный

1. Схема устройства компьютера

Приветствует студентов. Проверяет подготовку учащихся к уроку и выполнение домашнего задания.

Формулирует тему урока и раскрывает цели урока.

Задает вопросы, мотивирующие учащихся на изучение новой темы:

    Какие виды электронных схем вы знаете?

    Какие типы полупроводниковых приборов вам известны?

    Перечислите характеристики полупроводниковых материалов?

Обобщает ответы студентов, переходя к основной части урока.

Приветствуют преподавателя демонстрируют домашнюю работу в тетрадях.

Слушают и осмысливаю цели занятия, записывают дату и тему урока в тетрадях

Отвечают на поставленные вопросы.

Анализируют представленную на слайде информацию.

Основная часть:

Этап передачи новых знаний

2. Основные устройства полупроводниковых приборов

3. Характеристики диодов

4.Характеристики транзисторов

5. Характеристики микросхем

Лекция. (Демонстрация интерактивной презентации)

Обращает внимание на различие назначения и характеристик полупроводниковых приборов, используя видеофрагмент.

Указывает на конструкцию полупроводниковых приборов, выведя на экран схему, отражающую основные функциональные компоненты. полупроводниковых приборов

Рассказывает о каждом

полупроводниковом приборе

1) Диоды

Обращает внимание на то, что в основе свойств полупроводниковых материалов лежат общие принципы работы приборов

2) Транзисторы.

3)Микросхемы.

Слушают объяснение нового материала, делают записи в тетрадях.

Осмысливают новую информацию.

Изучают представленную схему, задают вопросы.

Чертят схемы в тетрадях.

Обсуждают, представленную на слайде информацию, демонстрируют свои знания из дисциплины « Физика» по характеристикам полупроводниковых приборов

Этап усвоения новых знаний

7 .Применение полупроводниковых приборов в специальности

Предлагает самостоятельно изучить понятие и назначение:

4) Полевые транзисторы в коммутационной аппаратуре.

Работа с учебником, выполнение записей в тетрадях. После изучения данного материала уясняют не понятные моменты.

Закрепления нового материала

Группа разбивается на бригады. Преподаватель каждой бригаде раздает карточки с ключевыми словами, которые надо дополнить терминами, по теме урока

Проверяет правильность выполнения задания

Каждая бригада работает над заданием, стараясь справиться с ним первой.

Подведения итогов урока

Оценивает деятельность студентов. Подводит общий итог урока.

Задает домашнее задание.

Благодарит студентов за урок.

Слушают и осмысливают итоги урока. Записывают домашнее задание в дневниках. Выражают отношение к уроку.