Какие основные функции выполняет звуковая система пк. Устройство звуковой системы пк

04.03.2020 Photoshop 3D

1.Звуковая система ПК

Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического сред­ства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

запись звуковых сигналов, поступающих от внешних источни­ков, например, микрофона или магнитофона, путем преобразо­вания входных аналоговых звуковых сигналов в цифровые и по­следующего сохранения на жестком диске;

воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (науш­ников);

воспроизведение звуковых компакт-дисков;

микширование (смешивание) при записи или воспроизведе­нии сигналов от нескольких источников;

одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex );

обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3 D - Sound ) звучания;

генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

управление работой внешних электронных музыкальных инст­рументов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой зву­ковые карты, либо устанавливаемые в слот материнской пла­ты, либо интегрированные на материнскую плату или карту рас­ширения другой подсистемы ПК. Отдельные функциональные мо­дули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 5.1, со­держит:

Модуль записи и воспроизведения звука;



  • модуль синтезатора;

  • модуль интерфейсов;

  • модуль микшера;

  • акустическую систему.
Первые четыре модуля, как правило, устанавливаются на зву­ковой карте. Причем существуют звуковые карты без модуля син­тезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной мик­росхемы. Таким образом, Chipset звуковой системы может содер­жать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпе­вают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не ме­няются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».

2. Модуль записи и воспроизведения

Модуль записи и воспроизведения звуковой системы осуще­ствляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в про­странстве.

Запись звука - это сохранение информации о колебаниях зву­кового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и циф­ровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

Если при записи звука пользуются микрофоном, который пре­образует непрерывный во времени звуковой сигнал в непрерыв­ный во времени электрический сигнал , получают звуковой сиг­нал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке на­пряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать часто­те колебаний звукового давления.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК опери­рует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая систе­ма, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обра­ботки сигнала с помощью ПК необходимо обратное преобразова­ние цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобра­зование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала пред­ставлена на рис. 5.2.

Предварительно аналоговый звуковой сигнал поступает на ана­логовый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсче­тов аналогового сигнала с заданной периодичностью и определя­ется частотой дискретизации. Причем частота дискретизации дол­жна быть не менее удвоенной частоты наивысшей гармоники (ча­стотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного зву­кового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в боль­шинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигна­ла и преобразование его в дискретный по времени и амплитуде. На рис. 5.3 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.




Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при кван­товании зависит от количества разрядов кодового слова. Если зна­чения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений ко­довых слов будет равно 2 N . Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максималь­ное число градаций амплитуды (уровней квантования) составит 2 16 = 65 536. Для 8-разрядного представления соответственно полу­чим 2 8 =256 градаций амплитуды.

Аналого-цифровое преобразование осуществляется специаль­ным электронным устройством - аналого-цифровым преобразова­ телем (АЦП), в котором дискретные отсчеты сигнала преобразу­ются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелатель­ные высокочастотные помехи, для фильтрации которых получен­ные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 5.4. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой диск­ретизации. На втором этапе из дискретных отсчетов путем сглажи­вания (интерполяции) формируется непрерывный аналоговый сиг­нал с помощью фильтра низкой частоты, который подавляет пе­риодические составляющие спектра дискретного сигнала.

Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, сте­реофонический звуковой сигнал длительностью 60 с, оцифрован­ный с частотой дискретизации 44,1 кГц при 16-разрядном кван­товании для хранения требует на винчестере около 10 Мбайт.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, исполь­зуют компрессию (сжатие), заключающуюся в уменьшении (Количества отсчетов и уровней квантования или числа бит, при-I холящихся на один отсчет.




Подобные методы кодирования звуковых данных с использо­ванием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия - кодеков (кодирование-декодиро­вание), поставляемых вместе с программным обеспечением зву­ковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала , модуль записи и воспроизведения циф­рового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являют­ся: частота дискретизации; тип и разрядность АЦП и ЦАП; спо­соб кодирования аудиоданных; возможность работы в режиме Full Duplex .

Частота дискретизации определяет максимальную час­тоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; му­зыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стерео­фонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность пред­ставления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звуча­ния. Некоторые звуковые карты оснащаются 20- и даже 24-раз­рядными АЦП и ПАП, что существенно повышает качество запи­си/воспроизведения звука.

Full Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одно­временно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое ка­чество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, на­пример, при проведении телеконференций, когда высокое каче­ство звука не требуется.

3. Модуль синтезатора

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рис. 5.5.

Синтезирование представляет собой процесс воссоздания струк­туры музыкального тона (ноты). Звуковой сигнал любого музыкаль­ного инструмента имеет несколько временных фаз. На рис. 5.5, а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сиг­нала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музы­кального инструмента. Длительность атаки для разных музы­кальных инструментов изменяется от единиц до нескольких де­сятков или даже до сотен миллисекунд. В фазе, называемой под­держкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим обра­зом. Цифровое устройство , использующее один из методов синте­за, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные ха­рактеристики, максимально близкие к характеристикам имити­руемого музыкального инструмента в фазе поддержки, как пока­зано на рис. 5.5, б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения (хо-рус). Далее производятся цифроаналоговое преобразование и фильт­рация сигнала с помощью фильтра низких частот (ФНЧ). Основные характеристики модуля синтезатора:

Метод синтеза звука;

Объем памяти;

Возможность аппаратной обработки сигнала для создания зву­ковых эффектов;

Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, гене­рирующие звук с использованием следующих методов.

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis - FM-синтез) предполагает исполь­зование для генерации голоса музыкального инструмента как ми­нимум двух генераторов сигналов сложной формы. Генератор не­сущей частоты формирует сигнал основного тона, частотно-мо­дулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генера­тор огибающей управляет амплитудой результирующего сигнала. FM-генератор обеспечивает приемлемое качество звука, отлича­ется невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis - WT-синтез) производится путем использования пред­варительно оцифрованных образцов звучания реальных музыкаль­ных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегриро­ванной в микросхему памяти WT-генератора. WT-синтезатор обес­печивает генерацию звука с высоким качеством. Этот метод син­теза реализован в современных звуковых картах.

Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов па­мяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект-процессора, который может быть либо самостоя­тельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-синтезом эффекты реверберации и хоруса стали стандартными. Синтез звука на основе физического моделирования предусматривает использование математических моделей звуко­образования реальных музыкальных инструментов для генера­ции в цифровом виде и для дальнейшего преобразования в зву­ковой сигнал с помощью ЦАП. Звуковые карты, использую­щие метод физического моделирования, пока не получили широкого распространения , поскольку для их работы требует­ся мощный ПК.

4. Модуль интерфейсов

Модуль интерфейсов обеспечивает обмен данными между звуко­вой системой и другими внешними и внутренними устройствами.

Интерфейс ISA в 1998 г. был вытеснен в звуковых картах интер­фейсом PCI.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет пере­давать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между зву­ковой системой и CPU.

MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стан­дартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание поряд­ка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд мож­но управлять светотехнической аппаратурой, видеооборудовани­ем в процессе выступления музыкальной группы на сцене. Уст­ройства с MIDI-интерфейсом соединяются последовательно, об­разуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть исполь­зован как ПК, так и музыкальный клавишный синтезатор, а так­же ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью спе­циального MIDI-адаптера, который имеет три MIDI-порта: вво­да, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

В состав звуковой карты входит интерфейс для подключения приводов CD-ROM.
5. Модуль микшера

Модуль микшера звуковой карты выполняет:

коммутацию (подключение/отключение) источников и при­емников звуковых сигналов, а также регулирование их уровня;

микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

К числу основных характеристик модуля микшера относятся:


  • число микшируемых сигналов на канале воспроизведения;

  • регулирование уровня сигнала в каждом микшируемом канале;

  • регулирование уровня суммарного сигнала;

  • выходная мощность усилителя;

  • наличие разъемов для подключения внешних и внутренних приемников/источников звуковых сигналов.
Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Вне­шние разъемы звуковой системы обычно находятся на задней па­нели корпуса системного блока: Joystick / MIDI - для подключе­ния джойстика или MIDI-адаптера; Mic In - для подключения микрофона; Line In - линейный вход для подключения любых источников звуковых сигналов; Line Out - линейный выход для подключения любых приемников звуковых сигналов ; Speaker - для подключения головных телефонов (наушников) или пассив­ной акустической системы.

Программное управление микшером осуществляется либо сред­ствами Windows, либо с помощью программы-микшера, поставля­емой в комплекте с программным обеспечением звуковой карты.

Совместимость звуковой системы с одним из стандартов зву­ковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы со­вместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

Стандарт Windows Sound System (WSS ) фирмы Microsoft вклю­чает звуковую карту и пакет программ, ориентированный в ос­новном на бизнес-приложения.

6. Акустическая система

Акустическая система (АС) непосредственно преобразует зву­ковой электрический сигнал в акустические колебания и являет­ся последним звеном звуковоспроизводящего тракта.

В состав АС, как правило, входят несколько звуковых коло­нок, каждая из которых может иметь один или несколько динамиков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуко­вые каналы.

Например, стереофонический сигнал содержит два компонен­та - сигналы левого и правого стереоканалов, что требует не ме­нее двух колонок в составе стереофонической акустической сис­темы. Звуковой сигнал в формате Dolby Digital содержит инфор­мацию для шести звуковых каналов: два фронтальных стереокана­ла, центральный канал (канал диалогов), два тыловых канала и канал сверхнизких частот. Следовательно, для воспроизведения сигнала Dolby Digital акустическая система должна иметь шесть звуковых колонок.

Как правило, принцип действия и внутреннее устройство зву­ковых колонок бытового назначения и используемых в техниче­ских средствах информатизации в составе акустической системы PC практически не различаются.

В основном АС для ПК состоит из двух звуковых колонок, ко­торые обеспечивают воспроизведение стереофонического сигна­ла. Обычно каждая колонка в АС для ПК имеет один динамик, однако в дорогих моделях используются два: для высоких и низ­ких частот. При этом современные модели акустических систем позволяют воспроизводить звук практически во всем слышимом частотном диапазоне благодаря применению специальной конст­рукции корпуса колонок или громкоговорителей.

Для воспроизведения низких и сверхнизких частот с высоким качеством в АС помимо двух колонок используется третий звуко­вой агрегат - сабвуфер (Subwoofer ), устанавливаемый под ра­бочим столом. Такая трехкомпонентная АС для ПК состоит из двух так называемых сателлитных колонок, воспроизводящих средние и высокие частоты (примерно от 150 Гц до 20 кГц), и сабвуфера, воспроизводящего частоты ниже 150 Гц.

Отличительная особенность АС для ПК - возможность нали­чия собственного встроенного усилителя мощности. АС со встро­енным усилителем называется активной. Пассивная АС усилителя не имеет.

Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание ак­тивной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанав­ливаемого в корпус одной из колонок.

Выходная мощность акустических систем для ПК может изме­няться в широком диапазоне и зависит от технических характе­ристик усилителя и динамиков. Если система предназначена для

озвучивания компьютерных игр, достаточно мощности 15 -20 Вт на колонку для помещения средних размеров. При необходимо­сти обеспечения хорошей слышимости во время лекции или пре­зентации в большой аудитории возможно использовать одну АС, имеющую мощность до 30 Вт на канал. С увеличением мощности АС увеличиваются ее габаритные размеры и повышается сто­имость.

Современные модели акустических систем имеют гнездо для головных телефонов, при подключении которых воспроизведе­ние звука через колонки автоматически прекращается.

Основные характеристики АС: полоса воспроизводимых час­тот, чувствительность, коэффициент гармоник, мощность.

Полоса воспроизводимых частот (FrequencyRespon ­ se ) - это амплитудно-частотная зависимость звукового давления, или зависимость звукового давления (силы звука) от частоты пе­ременного напряжения, подводимого к катушке динамика. Поло­са частот, воспринимаемых ухом человека, находится в диапазо­не от 20 до 20 000 Гц. Колонки, как правило, имеют диапазон, ограниченный в области низких частот 40 - 60 Гц. Решить пробле­му воспроизведения низких частот позволяет использование саб­вуфера.

Чувствительность звуковой колонки (Sensitivity ) характеризуется звуковым давлением, которое она создает на рас­стоянии 1 м при подаче на ее вход электрического сигнала мощ­ностью 1 Вт. В соответствии с требованиями стандартов чувстви­тельность определяется как среднее звуковое давление в опреде­ленной полосе частот.

Чем выше значение этой характеристики , тем лучше АС пере­дает динамический диапазон музыкальной программы. Разница между самыми «тихими» и самыми «громкими» звуками совре­менных фонограмм 90-95 дБ и более. АС с высокой чувствитель­ностью достаточно хорошо воспроизводят как тихие, так и гром­кие звуки.

Коэффициент гармоник (Total Harmonic Distortion - THD ) оценивает нелинейные искажения, связанные с появлени­ем в выходном сигнале новых спектральных составляющих. Коэф­фициент гармоник нормируется в нескольких диапазонах частот. Например, для высококачественных АС класса Hi-Fi этот коэф­фициент не должен превышать: 1,5% в диапазоне частот 250- 1000 Гц; 1,5 % в диапазоне частот 1000-2000 Гц и 1,0 % в диапа­зоне частот 2000 - 6300 Гц. Чем меньше значение коэффициента гармоник, тем качественнее АС.

Электрическая мощность (Power Handling ), которую выдерживает АС, является одной из основных характеристик. Од­нако нет прямой взаимосвязи между мощностью и качеством вос­произведения звука. Максимальное звуковое давление зависит,

скорее, от чувствительности, а мощность АС в основном опреде­ляет ее надежность.

Часто на упаковке АС для ПК указывают значение пиковой мощности акустической системы, которая не всегда отражает ре­альную мощность системы, поскольку может превышать номи­нальную в 10 раз. Вследствие существенного различия физических процессов, происходящих при испытаниях АС, значения элек­трических мощностей могут отличаться в несколько раз. Для срав­нения мощности различных АС необходимо знать, какую именно мощность указывает производитель продукции и какими метода­ми испытаний она определена.

Среди производителей высококачественных и дорогих АС - фирмы Creative, Yamaha, Sony, Aiwa. AC более низкого класса выпускают фирмы Genius, Altec, JAZZ Hipster.

Некоторые модели колонок фирмы Microsoft подключаются не к звуковой карте, а к порту USB. В этом случае звук поступает на колонки в цифровом виде, а его декодирование производит не­большой Chipset, установленный в колонках.
7. Направления совершенствования звуковой системы

В настоящее время фирмы Intel, Compaq и Microsoft предло­жили новую архитектуру звуковой системы ПК. Согласно этой архитектуре модули обработки звуковых сигналов выносятся за пределы корпуса ПК, в котором на них действуют электричес­кие помехи, и размещаются, например, в колонках акустической системы. В этом случае звуковые сигналы передаются в цифровой форме, что значительно повышает их помехозащищенность и ка­чество воспроизведения звука. Для передачи цифровых данных в цифровой форме предусматривается использование высокоско­ростных шин USB и ШЕЕ 1394.

Еще одним направлением совершенствования звуковой систе­мы является создание объемного (пространственного) звука, на­зываемого трехмерным, или 3D-Sound (Three Dimentional Sound ). Для получения объемного звучания производится специальная обработка фазы сигнала: фазы выходных сигналов левого и пра­вого каналов сдвигаются относительно исходного. При этом ис­пользуется свойство мозга человека определять положение источ­ника звука путем анализа соотношения амплитуд и фаз звукового сигнала, воспринимаемого каждым ухом. Пользователь звуковой системы, оборудованной специальным модулем обработки 3D-звука, ощущает эффект «перемещения» источника звука.

Новым направлением применения мультимедийных техноло­гий является создание домашнего театра на базе ПК (PC - Theater ), т.е. варианта мультимедийного ПК, предназначенного одновре­менно нескольким пользователям для наблюдения за игрой, про-

смотра образовательной программы или фильма в стандарте DVD. PC-Theater в своем составе имеет специальную многоканальную акустическую систему, формирующую объемный звук (Surround Sound ). Системы Surround Sound создают в помещении различные звуковые эффекты , причем пользователь ощущает, что он нахо­дится в центре звукового поля, а источники звука - вокруг него. Многоканальные звуковые системы Surround Sound используют­ся в кинотеатрах и уже начинают появляться в виде устройств бытового назначения.

В многоканальных системах бытового назначения звук записы­вается на двух дорожках лазерных видеодисков или видеокассет по технологии Dolby Surround, разработанной фирмой Dolby Laboratories. К наиболее известным разработкам в этом направле­нии относятся:

Dolby (Surround ) Pro Logic - четырехканальная звуковая систе­ма, содержащая левый и правый стереоканалы, центральный ка­нал для диалогов и тыловой канал для эффектов.

Dolby Surround Digital - звуковая система, состоящая из 5 + 1 ка­налов: левого, правого, центрального, левого и правого каналов тыловых эффектов и канала сверхнизких частот. Запись сигналов для системы выполняется в виде цифровой оптической фоно­граммы на кинопленке.

В отдельных моделях акустических колонок помимо стандарт­ных регуляторов высоких/низких частот, громкости и баланса имеются кнопки для включения специальных эффектов, напри­мер, ЗD-звука, Dolby Surround и др.

Контрольные вопросы

    Какие основные функции выполняет звуковая система ПК?

    Какие основные компоненты входят в состав звуковой системы ПК?

    Исходя из каких соображений выделяется частота дискретизации сигнала в процессе аналого-цифрового преобразования?


  1. Перечислите основные этапы аналого-цифрового и цифроаналогового преобразования.
  2. Какие основные параметры характеризуют модуль записи и воспроизведения звука?

    Какие применяют методы синтеза звука?

    Какие функции выполняет модуль микшера и что относится к числу его основных характеристик?

    В чем отличие пассивной акустической системы от активной?

Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического сред­ства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

запись звуковых сигналов, поступающих от внешних источни­ков, например, микрофона или магнитофона, путем преобразо­вания входных аналоговых звуковых сигналов в цифровые и по­следующего сохранения на жестком диске;

воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (науш­ников);

воспроизведение звуковых компакт-дисков;

микширование (смешивание) при записи или воспроизведе­нии сигналов от нескольких источников;

одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex );

обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3 D - Sound ) звучания;

генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

управление работой внешних электронных музыкальных инст­рументов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой зву­ковые карты, либо устанавливаемые в слот материнской пла­ты, либо интегрированные на материнскую плату или карту рас­ширения другой подсистемы ПК. Отдельные функциональные мо­дули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 5.1, со­держит:

Модуль записи и воспроизведения звука;

    модуль синтезатора;

    модуль интерфейсов;

    модуль микшера;

    акустическую систему.

Первые четыре модуля, как правило, устанавливаются на зву­ковой карте. Причем существуют звуковые карты без модуля син­тезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной мик­росхемы. Таким образом, Chipset звуковой системы может содер­жать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпе­вают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не ме­няются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».

2. Модуль записи и воспроизведения

Модуль записи и воспроизведения звуковой системы осуще­ствляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в про­странстве.

Запись звука - это сохранение информации о колебаниях зву­кового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и циф­ровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

Если при записи звука пользуются микрофоном, который пре­образует непрерывный во времени звуковой сигнал в непрерыв­ный во времени электрический сигнал, получают звуковой сиг­нал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке на­пряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать часто­те колебаний звукового давления.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК опери­рует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая систе­ма, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обра­ботки сигнала с помощью ПК необходимо обратное преобразова­ние цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобра­зование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала пред­ставлена на рис. 5.2.

Предварительно аналоговый звуковой сигнал поступает на ана­логовый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсче­тов аналогового сигнала с заданной периодичностью и определя­ется частотой дискретизации. Причем частота дискретизации дол­жна быть не менее удвоенной частоты наивысшей гармоники (ча­стотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного зву­кового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в боль­шинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигна­ла и преобразование его в дискретный по времени и амплитуде. На рис. 5.3 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.

Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при кван­товании зависит от количества разрядов кодового слова. Если зна­чения амплитуды записать с помощью двоичных чисел и задать длину кодового словаN разрядов, число возможных значений ко­довых слов будет равно2 N . Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максималь­ное число градаций амплитуды (уровней квантования) составит 2 16 = 65 536. Для 8-разрядного представления соответственно полу­чим 2 8 =256 градаций амплитуды.

Аналого-цифровое преобразование осуществляется специаль­ным электронным устройством - аналого-цифровым преобразова­ телем (АЦП), в котором дискретные отсчеты сигнала преобразу­ются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелатель­ные высокочастотные помехи, для фильтрации которых получен­ные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 5.4. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой диск­ретизации. На втором этапе из дискретных отсчетов путем сглажи­вания (интерполяции) формируется непрерывный аналоговый сиг­нал с помощью фильтра низкой частоты, который подавляет пе­риодические составляющие спектра дискретного сигнала.

Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, сте­реофонический звуковой сигнал длительностью 60 с, оцифрован­ный с частотой дискретизации 44,1 кГц при 16-разрядном кван­товании для хранения требует на винчестере около 10 Мбайт.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, исполь­зуют компрессию (сжатие), заключающуюся в уменьшении (Количества отсчетов и уровней квантования или числа бит, при-I холящихся на один отсчет.

Подобные методы кодирования звуковых данных с использо­ванием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия - кодеков (кодирование-декодиро­вание), поставляемых вместе с программным обеспечением зву­ковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения циф­рового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являют­ся: частота дискретизации; тип и разрядность АЦП и ЦАП; спо­соб кодирования аудиоданных; возможность работы в режиме Full Duplex .

Частота дискретизации определяет максимальную час­тоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; му­зыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стерео­фонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность пред­ставления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звуча­ния. Некоторые звуковые карты оснащаются 20- и даже 24-раз­рядными АЦП и ПАП, что существенно повышает качество запи­си/воспроизведения звука.

Full Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одно­временно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое ка­чество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, на­пример, при проведении телеконференций, когда высокое каче­ство звука не требуется.

Звуковая система ПК – это комплекс программно-аппаратных средств, выполняющих следующие функции:

Конструктивно звуковая система ПК представляет собой звуковые карты, устанавливаемые в слот , либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.

Классическая звуковая система ПК содержит:

  • модуль записи и воспроизведения звука;
  • модуль синтезатора;
  • модуль интерфейсов;
  • модуль микшера;
  • акустическую систему.

Первые четыре модуля, как правило, устанавливают на звуковой карте. Каждый из модулей может быть выполнен в виде микросхемы, либо входить в состав многофункциональной микросхемы.

Диаграмма Звуковая система пк

Рисунок – Структура звуковой подсистемы ПК

  1. Модуль записи/воспроизведения осуществляет аналогово-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных по каналам DMA (Direct Memory Access – канал прямого доступа к памяти).
  2. Модуль синтезатора позволяет генерировать практически любые звуки, в том числе звучание реальных музыкальных инструментов.

Рисунок 2 – Схема современного синтезатора

Звук создаётся следующим образом. Цифровое устройство генерирует так называемый сигнал возбуждения с заданной высотой звука, который должен иметь спектральные характеристики, близкие к характеристикам имитируемого музыкального инструмента. Далее сигнал поступает на фильтр, имитирующий амплитудно-частотную характеристику этого инструмента. На другой вход подаётся сигнал амплитудной огибающей того же инструмента. Затем совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов (эхо и др.). Затем производят цифроаналоговое преобразование и фильтрацию сигнала с помощью фильтра низких частот (ФНЧ).

Основные характеристики модуля синтезатора:

  • метод синтеза звука : на основе частотной модуляции, на основе таблиц волн, на основе физического модулирования;
  • объём памяти ;
  • возможность аппаратной обработки сигнала для создания звуковых эффектов;
  • полифония – максимальное число одновременно воспроизводимых элементов звука.
  1. Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.
  1. Модуль микшера звуковой карты выполняет:
  • коммутацию (подключение/отключение) источников и приёмников звуковых сигналов, а также регулирование их уровня;
  • микширование нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

Основные характеристики:

  • число микшируемых сигналов на канале воспроизведения;
  • регулирование уровня сигнала в каждом микшируемом канале;
  • регулирование уровня суммарного сигнала;
  • выходная мощность усилителя;
  • наличие разъёмов для подключения внешних и внутренних приёмников/источников звуковых сигналов.

Программное обеспечение управления микшером осуществляется либо средствами Windows, либо с помощью специального программного обеспечения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство просвещения ПМР

ГОУ «Тираспольский Техникум Информатики и Права»

Дипломная работа

Тема: Исследование звуковой системы ПК с помощью диодной пластины

г. Тирасполь

Введение

Глава 1. Теоретическая часть. Исследование звуковой системы ПК с помощью диодной пластины

1.1 Аналитический обзор по теме

1.2 Практическая часть

1.2.1 Структурная схема приемо-передающего устройства для беспроводной передачи сигнала

1.2.2 Выбор элементной базы для построения устройства для исследования звуковой системы ПК

1.2.3 Принцип работы устройства для исследования звуковой системы ПК

1.2.4 Применение устройства

Глава 2. Охрана труда. Меры безопасности при техническом обслуживании средств вычислительной техники

2.1 Производственная санитария и гигиена труда

2.2 Требования к организации и оборудованию рабочего места техника

2.3 Требования пожарной безопасности

Заключение

Список использованной литературы

Введение

Традиционным способом передача звука от звуковой карты ПК на усилитель колонок осуществляется с помощью кабелей. В дипломном проекте рассмотрена беспроводная передача звука по лазерному лучу на расстояние до нескольких метров.

Данная работа является актуальной, так как звуковая система существенно расширяет возможности ПК как технического средства информатизации. Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.

Целью данной дипломной работы является исследование схемотехнических решений устройств для исследований работы звуковой системы ПК, разработка структурной и принципиальной схемы, изготовление макета.

Для реализации поставленных целей нужно решить следующие задачи:

рассмотреть литературных данных по теме диплома, провести исследования по данной тематике (разработать схемы, спроектировать устройство, проанализировать рабочие характеристики устройства), привести инженерные расчеты данного разрабатываемого устройства.

Целью охраны труда является научный анализ условий труда, технологических процессов, аппаратуры и оборудования с точки зрения возможности возникновения появления опасных факторов, выделение вредных производственных веществ. На основе такого анализа определяются опасные участки производства, возможные аварийные ситуации и разрабатываются мероприятия по их устранению или ограничение последствий.

Изучение и решение проблем, связанных с обеспечением здоровых и безопасных условий, в которых протекает труд человека - одна из наиболее важных задач в разработке новых технологий и систем производства.

Изучение и выявление возможных причин производственных несчастных случаев, профессиональных заболеваний, аварий, взрывов, пожаров, и разработка мероприятий и требований, направленных на устранение этих причин позволяют создать безопасные и благоприятные условия для труда человека. Комфортные и безопасные условия труда - один из основных факторов, влияющих на производительность и безопасность труда, здоровье человека.

Глава 1. Теоретическая часть. Исследование звуковой системы ПК с помощью диодной пластины

1.1 Аналитический обзор по теме

Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического средства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

запись звуковых сигналов, поступающих от внешних источников, например, микрофона или магнитофона, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске;

воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (наушников);

воспроизведение звуковых компакт-дисков;

микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников;

одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex);

обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3D-Sound) звучания;

генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК, а также устройства записи и воспроизведения аудиоинформации (акустическую систему). Отдельные функциональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 1, содержит:

модуль записи и воспроизведения звука;

модуль синтезатора;

модуль интерфейсов;

модуль микшера;

акустическую систему.

Рис. 1 - Структура звуковой системы ПК

Первые четыре модуля, как правило, устанавливаются на звуковой карте. Причем существуют звуковые карты без модуля синтезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной микросхемы. Таким образом, Chipset звуковой системы может содержать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпевают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не меняются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».

МОДУЛЬ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ

Модуль записи и воспроизведения звуковой системы осуществляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в пространстве.

Запись звука - это сохранение информации о колебаниях звукового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и цифровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

Если при записи звука пользуются микрофоном, который преобразует непрерывный во времени звуковой сигнал в непрерывный во времени электрический сигнал, получают звуковой сигнал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке напряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать частоте колебаний звукового давления.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем, что ПК оперирует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая система, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обработки сигнала с помощью ПК необходимо обратное преобразование цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобразование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала представлена на рис. 2.

Рис. 2 - Схема аналого-цифрового преобразования звукового сигнала

Предварительно аналоговый звуковой сигнал поступает на аналоговый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсчетов аналогового сигнала с заданной периодичностью и определяется частотой дискретизации. Причем частота дискретизации должна быть не менее удвоенной частоты наивысшей гармоники (частотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного звукового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в большинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Рис. 3 - Дискретизация по времени и квантование по уровню аналогового сигнала

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигнала и преобразование его в дискретный по времени и амплитуде. На рис. 3 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.

Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при квантовании зависит от количества разрядов кодового слова. Если значения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений кодовых слов будет равно 2N. Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максимальное число градаций амплитуды (уровней квантования) составит 216= 65 536. Для 8-разрядного представления соответственно получим 28 = 256 градаций амплитуды.

Аналого-цифровое преобразование осуществляется специальным электронным устройством - аналого-цифровым преобразователем (АЦП), в котором дискретные отсчеты сигнала преобразуются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелательные высокочастотные помехи, для фильтрации которых полученные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 4. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой дискретизации. На втором этапе из дискретных отсчетов путем сглаживания (интерполяции) формируется непрерывный аналоговый сигнал с помощью фильтра низкой частоты, который подавляет периодические составляющие спектра дискретного сигнала.

Рис. 4 - Схема цифроаналогового преобразования

Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, стереофонический звуковой сигнал длительностью 60 с, оцифрованный с частотой дискретизации 44,1 кГц при 16-разрядном квантовании для хранения требует на винчестере около 10 Мбайт.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, используют компрессию (сжатие), заключающуюся в уменьшении количества отсчетов и уровней квантования или числа бит, приходящихся на один отсчет.

Подобные методы кодирования звуковых данных с использованием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия- кодеков (кодирование-декодирование), поставляемых вместе с программным обеспечением звуковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения цифрового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являются: частота дискретизации; тип и разрядность АЦП и ЦАП; способ кодирования аудиоданных; возможность работы в режиме Full Duplex.

Частота дискретизации определяет максимальную частоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; музыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стереофонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность представления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звучания. Некоторые звуковые карты оснащаются 20- и даже 24-разрядными АЦП и ЦАП, что существенно повышает качество записи/воспроизведения звука.

Full Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одновременно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое качество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, например, при проведении телеконференций, когда высокое качество звука не требуется.

МОДУЛЬ СИНТЕЗАТОРА

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рис. 5.

Рис. 5 - Принцип действия современного синтезатора: а - фазы звукового сигнала; б - схема синтезатора

Синтезирование представляет собой процесс воссоздания структуры музыкального тона (ноты). Звуковой сигнал любого музыкального инструмента имеет несколько временных фаз. На рис. 5а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сигнала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музыкального инструмента. Длительность атаки для разных музыкальных инструментов изменяется от единиц до нескольких десятков или даже до сотен миллисекунд. В фазе, называемой поддержкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим образом. Цифровое устройство, использующее один из методов синтеза, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные характеристики, максимально близкие к характеристикам имитируемого музыкального инструмента в фазе поддержки, как показано на рис. 5 б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения (хо-рус). Далее производятся цифроаналоговое преобразование и фильтрация сигнала с помощью фильтра низких частот (ФНЧ). Основные характеристики модуля синтезатора:

метод синтеза звука;

объем памяти;

возможность аппаратной обработки сигнала для создания зву ковых эффектов;

полифония - максимальное число одновременно воспроизводимых элементов звуков.

Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, генерирующие звук с использованием следующих методов.

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis - FM-синтез) предполагает использование для генерации голоса музыкального инструмента как минимум двух генераторов сигналов сложной формы. Генератор несущей частоты формирует сигнал основного тона, частотно-модулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генератор огибающей управляет амплитудой результирующего сигнала. FM-генератор обеспечивает приемлемое качество звука, отличается невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis - WT-синтез) производится путем использования предварительно оцифрованных образцов звучания реальных музыкальных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегрированной в микросхему памяти WT-генератора. WT-синтезатор обеспечивает генерацию звука с высоким качеством. Этот метод синтеза реализован в современных звуковых картах.

Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов памяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект-процессора, который может быть либо самостоятельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-син-тезом эффекты реверберации и хоруса стали стандартными.

Синтез звука на основе физического моделирования предусматривает использование математических моделей звукообразования реальных музыкальных инструментов для генерации в цифровом виде и для дальнейшего преобразования в звуковой сигнал с помощью ЦАП. Звуковые карты, использующие метод физического моделирования, пока не получили широкого распространения, поскольку для их работы требуется мощный ПК.

МОДУЛЬ ИНТЕРФЕЙСОВ

Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.

Интерфейс ISA в 1998 г. был вытеснен в звуковых картах интерфейсом PCI.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет передавать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между звуковой системой и CPU.

MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стандартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание порядка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд можно управлять светотехнической аппаратурой, видеооборудованием в процессе выступления музыкальной группы на сцене. Устройства с MIDI-интерфейсом соединяются последовательно, образуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть использован как ПК, так и музыкальный клавишный синтезатор, а также ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью специального MIDI-адаптера, который имеет три MIDI-порта: ввода, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

В состав звуковой карты входит интерфейс для подключения приводов CD-ROM.

МОДУЛЬ МИКШЕРА

Модуль микшера звуковой карты выполняет:

коммутацию (подключение/отключение) источников и приемников звуковых сигналов, а также регулирование их уровня;

микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

К числу основных характеристик модуля микшера относятся:

число микшируемых сигналов на канале воспроизведения;

регулирование уровня сигнала в каждом микшируемом канале;

регулирование уровня суммарного сигнала;

выходная мощность усилителя;

наличие разъемов для подключения внешних и внутренних
приемников/источников звуковых сигналов.

Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Внешние разъемы звуковой системы обычно находятся на задней панели корпуса системного блока: Joystick/MIDI - для подключения джойстика или MIDI-адаптера; Mic In - для подключения микрофона; Line In - линейный вход для подключения любых источников звуковых сигналов; Line Out - линейный выход для подключения любых приемников звуковых сигналов; Speaker - для подключения головных телефонов (наушников) или пассивной акустической системы.

Программное управление микшером осуществляется либо средствами Windows, либо с помощью программы-микшера, поставляемой в комплекте с программным обеспечением звуковой карты.

Совместимость звуковой системы с одним из стандартов звуковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы совместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

Стандарт Windows Sound System (WSS) фирмы Microsoft включает звуковую карту и пакет программ, ориентированный в основном на бизнес-приложения.

АКУСТИЧЕСКАЯ СИСТЕМА

Акустическая система (АС) непосредственно преобразует звуковой электрический сигнал в акустические колебания и является последним звеном звуковоспроизводящего тракта.

В состав АС, как правило, входят несколько звуковых колонок, каждая из которых может иметь один или несколько динамиков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуковые каналы.

Например, стереофонический сигнал содержит два компонента - сигналы левого и правого стереоканалов, что требует не менее двух колонок в составе стереофонической акустической системы. Звуковой сигнал в формате Dolby Digital содержит информацию для шести звуковых каналов: два фронтальных стереоканала, центральный канал (канал диалогов), два тыловых канала и канал сверхнизких частот. Следовательно, для воспроизведения сигнала Dolby Digital акустическая система должна иметь шесть звуковых колонок.

Как правило, принцип действия и внутреннее устройство звуковых колонок бытового назначения и используемых в технических средствах информатизации в составе акустической системы PC практически не различаются.

В основном АС для ПК состоит из двух звуковых колонок, которые обеспечивают воспроизведение стереофонического сигнала. Обычно каждая колонка в АС для ПК имеет один динамик, однако в дорогих моделях используются два: для высоких и низких частот. При этом современные модели акустических систем позволяют воспроизводить звук практически во всем слышимом частотном диапазоне благодаря применению специальной конструкции корпуса колонок или громкоговорителей.

Для воспроизведения низких и сверхнизких частот с высоким качеством в АС помимо двух колонок используется третий звуковой агрегат - сабвуфер (Subwoofer), устанавливаемый под рабочим столом. Такая трехкомпонентная АС для ПК состоит из двух так называемых сателлитных колонок, воспроизводящих средние и высокие частоты (примерно от 150 Гц до 20 кГц), и сабвуфера, воспроизводящего частоты ниже 150 Гц.

Отличительная особенность АС для ПК - возможность наличия собственного встроенного усилителя мощности. АС со встроенным усилителем называется активной. Пассивная АС усилителя не имеет.

Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание активной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанавливаемого в корпус одной из колонок.

Выходная мощность акустических систем для ПК может изменяться в широком диапазоне и зависит от технических характеристик усилителя и динамиков. Если система предназначена для озвучивания компьютерных игр, достаточно мощности 15 - 20 Вт на колонку для помещения средних размеров. При необходимости обеспечения хорошей слышимости во время лекции или презентации в большой аудитории возможно использовать одну АС, имеющую мощность до 30 Вт на канал. С увеличением мощности АС увеличиваются ее габаритные размеры и повышается стоимость.

Современные модели акустических систем имеют гнездо для головных телефонов, при подключении которых воспроизведение звука через колонки автоматически прекращается.

Основные характеристики АС:

полоса воспроизводимых частот,

чувствительность,

коэффициент гармоник,

мощность.

Полоса воспроизводимых частот (FrequencyResponse) - это амплитудно-частотная зависимость звукового давления, или зависимость звукового давления (силы звука) от частоты переменного напряжения, подводимого к катушке динамика. Полоса частот, воспринимаемых ухом человека, находится в диапазоне от 20 до 20 000 Гц. Колонки, как правило, имеют диапазон, ограниченный в области низких частот 40 - 60 Гц. Решить проблему воспроизведения низких частот позволяет использование сабвуфера.

Чувствительность звуковой колонки (Sensitivity) характеризуется звуковым давлением, которое она создает на расстоянии 1 м при подаче на ее вход электрического сигнала мощностью 1 Вт. В соответствии с требованиями стандартов чувствительность определяется как среднее звуковое давление в определенной полосе частот.

Чем выше значение этой характеристики, тем лучше АС передает динамический диапазон музыкальной программы. Разница между самыми «тихими» и самыми «громкими» звуками современных фонограмм 90 - 95 дБ и более. АС с высокой чувствительностью достаточно хорошо воспроизводят как тихие, так и громкие звуки.

Коэффициент гармоник (Total Harmonic Distortion - THD) оценивает нелинейные искажения, связанные с появлением в выходном сигнале новых спектральных составляющих. Коэффициент гармоник нормируется в нескольких диапазонах частот. Например, для высококачественных АС класса Hi-Fi этот коэффициент не должен превышать: 1,5% в диапазоне частот 250 - 1000 Гц; 1,5 % в диапазоне частот 1000 - 2000 Гц и 1,0 % в диапазоне частот 2000 - 6300 Гц. Чем меньше значение коэффициента гармоник, тем качественнее АС.

Электрическая мощность (Power Handling), которую выдерживает АС, является одной из основных характеристик. Однако нет прямой взаимосвязи между мощностью и качеством воспроизведения звука. Максимальное звуковое давление зависит, скорее, от чувствительности, а мощность АС в основном определяет ее надежность.

Часто на упаковке АС для ПК указывают значение пиковой мощности акустической системы, которая не всегда отражает реальную мощность системы, поскольку может превышать номинальную в 10 раз. Вследствие существенного различия физических процессов, происходящих при испытаниях АС, значения электрических мощностей могут отличаться в несколько раз. Для сравнения мощности различных АС необходимо знать, какую именно мощность указывает производитель продукции и какими методами испытаний она определена.

Среди производителей высококачественных и дорогих АС - фирмы Creative, Yamaha, Sony, Aiwa. AC более низкого класса выпускают фирмы Genius, Altec, JAZZ Hipster.

Некоторые модели колонок фирмы Microsoft подключаются не к звуковой карте, а к порту USB. В этом случае звук поступает на колонки в цифровом виде, а его декодирование производит небольшой Chipset, установленный в колонках.

МЕТОДЫ СЖАТИЯ ЗВУКОВОЙ ИНФОРМАЦИИ

Простейший способ цифрового представления сигналов называется импульсно-кодовой модуляцией (ИКМ) или РСМ (Pulse-Code Modulation). Поток данных РСМ представляет собой последовательность мгновенных значений или выборок (samples) в двоичном коде. Если применяемые преобразователи имеют линейную характеристику (мгновенное значение напряжения сигнала пропорционально коду), то данная модуляция называется линейной (Linear PCM). В случае ИКМ кодер и декодер не выполняют преобразования информации, а только занимаются упаковкой/распаковкой бит в байты и слова данных. Интенсивность потока (bit rate) определяется как произведение частоты дискретизации (sample rate) на разрядность и на число каналов. Аудио-CD дает поток 44 100 х16х2= 1411 200 бит/с (стерео).

Для реальных звуковых сигналов кодирование с линейной ИКМ является неэкономичным. Поток данных можно сократить, если использовать несложный алгоритм сжатия, применяемый в системе дельта-ИКМ (ДИКМ), она же DPCM (Differential Pulse-Code Modulation). Упрощенно этот алгоритм выглядит так: в цифровом потоке передаются не сами мгновенные отсчеты, а масштабированная разность реального отсчета и его значения, сконструированного кодеком по ранее сгенерированному им потоку данных. Разность передается с меньшим числом разрядов, чем сами отсчеты. В АДИКМ (адаптивная | ДИКМ, или ADPCM - Adaptive Differential Pulse-Code Modulation) масштаб разности определяется по предыстории - если разность монотонно растет, маcштаб увеличивается, и наоборот.

Конечно, восстановленный сигнал при таком представлении будет больше отличаться от исходного, чем при обычной ИКМ, но можно добиться существенного сокращения потока цифровых данных. ADPCM стала широко применяться при цифровом хранении и передаче аудиоинформации (например, в голосовых модемах). Алгоритм ADPCM с точки зрения процессора PC может быть реализован как программно, так и аппаратно средствами звуковой карты (модема).

Более сложные алгоритмы и высокая степень сжатия применяются в аудио- -кодеках MPEG. В кодере MPEG-1 входным потоком являются 16-битные выборки с частотой 48 кГц (профессиональная аудиотехника), 44,1 кГц (бытовая техника) или 32 кГц (применяется в телекоммуникациях).

Стандарт определяет три «слоя» (layer) сжатия - Layer I, Layer 2 и Layer 3, работающие один поверх другого.

Первоначальная компрессия осуществляется на основе психофизических свойств звуковосприятия. Здесь обыгрывается свойство маскирования звуков: если в сигнале имеются два тона с близкими частотами, существенно различающиеся по уровню, то более мощный сигнал замаскирует слабый (он не будет услышан). Пороги маскирования зависят от удаленности частот.

В MPEG весь диапазон звуковых частот разбивается на 32 поддиапазона (sub-band), в каждом поддиапазоне определяются наиболее мощные спектральные составляющие и для них вычисляются пороги частот маскирования. Эффекты маскирования от нескольких мощных составляющих суммируются. Действие маскирования распространяется не только на сигналы, присутствующие одновременно с мощным, но и на предшествующие ему за 2-5 мс (premasking) и последующие в течение до 100 мс (postmasking). Сигналы маскированных областей обрабатываются с меньшим разрешением, поскольку для них снижаются требования к отношению сигнал/шум. За счет этого «загрубления» и происходит сжатие. Компрессию на психофизической основе выполняет слой Layer 1.

Следующий этап (Layer 2) повышает точность представления и более эффективно упаковывает информацию. Здесь у кодера в работе находится «окно» длительностью 23 мс (1152 выборки).

На последнем этапе (Layer 3) применяются сложные наборы фильтров и нелинейное квантование. Наибольшую степень сжатия обеспечивает слой Layer 3, для которого при высокой достоверности декодирования достигается коэффициент сжатия 11:1.

МЕТОДЫ ОБРАБОТКИ ЗВУКОВОЙ ИНФОРМАЦИИ

При цифровом хранении легко реализуются многие эффекты, которые ранее требовали громоздких электромеханических или электроакустических устройств или сложной аналоговой электроники.

Известно, что в закрытом помещении (например, зале) от источника до слушателя доходит не только прямой звук, но и отраженный (многократно) от различных поверхностей (стен, колонн и т. п.). Отраженные сигналы приходят относительно прямого с различными задержками и затуханием. Это явление называется реверберацией. И Этим явлением при цифровой обработке сигнала можно управлять. При цифровом хранении легко реализуются многие эффекты, которые ранее требовали громоздких электромеханических или электроакустических устройств или сложной аналоговой электроники.

Прежде всего, это искусственная реверберация и эхо.

Известно, что в закрытом помещении (например, зале) от источника до слушателя доходит не только прямой звук, но и отраженный (многократно) от различных поверхностей (стен, колонн и т. п.). Отраженные сигналы приходят относительно прямого с различными задержками и затуханием. Это явление называется реверберацией. И Этим явлением при цифровой обработке сигнала можно управлять.

На основе смещения выборок можно делать и более сложные эффекты. В цифровой форме представления легко имитируется эффект Допплера - изменение частоты при быстром приближении источника звука к слушателю или удалении источника от слушателя. С этим эффектом сталкивались все - однотонный свисток приближающегося поезда звучит выше, а удаляющегося - ниже реального тона. В цифровом виде при воспроизведении накопление отставания выборок приведет к понижению тона, а сокращение отставания - к повышению.

Кроме фокусов с задержками возможно использование цифровой фильтрации - от реализации простейших темброблоков и эквалайзеров до «вырезания» голоса из песни (эффект «караоке»). Все определяется программным обеспечением и вычислительными ресурсами процессора.

НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ЗВУКОВОЙ СИСТЕМЫ

В настоящее время фирмы Intel, Compaq и Microsoft предложили новую архитектуру звуковой системы ПК. Согласно этой архитектуре модули обработки звуковых сигналов выносятся за пределы корпуса ПК, в котором на них действуют электрические помехи, и размещаются, например, в колонках акустической системы. В этом случае звуковые сигналы передаются в цифровой форме, что значительно повышает их помехозащищенность и качество воспроизведения звука. Для передачи цифровых данных в цифровой форме предусматривается использование высокоскоростных шин USB и IEEE 1394.

Еще одним направлением совершенствования звуковой системы является создание объемного (пространственного) звука, называемого трехмерным, или 3D-Sound (Three Dimentional Sound). Для получения объемного звучания производится специальная обработка фазы сигнала: фазы выходных сигналов левого и правого каналов сдвигаются относительно исходного. При этом используется свойство мозга человека определять положение источника звука путем анализа соотношения амплитуд и фаз звукового сигнала, воспринимаемого каждым ухом. Пользователь звуковой системы, оборудованной специальным модулем обработки 3D-звука, ощущает эффект «перемещения» источника звука.

Новым направлением применения мультимедийных технологий является создание домашнего театра на базе ПК (PC-Theater), т.е. варианта мультимедийного ПК, предназначенного одновременно нескольким пользователям для наблюдения за игрой, просмотра образовательной программы или фильма в стандарте DVD. PC-Theater в своем составе имеет специальную многоканальную акустическую систему, формирующую объемный звук (Surround Sound). Системы Surround Sound создают в помещении различные звуковые эффекты, причем пользователь ощущает, что он находится в центре звукового поля, а источники звука - вокруг него. Многоканальные звуковые системы Surround Sound используются в кинотеатрах и уже начинают появляться в виде устройств бытового назначения.

В многоканальных системах бытового назначения звук записывается на двух дорожках лазерных видеодисков или видеокассет по технологии Dolby Surround, разработанной фирмой Dolby Laboratories. К наиболее известным разработкам в этом направлении относятся:

Dolby (Surround) Pro Logic - четырехканальная звуковая система, содержащая левый и правый стереоканалы, центральный канал для диалогов и тыловой канал для эффектов.

Dolby Surround Digital - звуковая система, состоящая из 5 + 1 каналов: левого, правого, центрального, левого и правого каналов тыловых эффектов и канала сверхнизких частот. Запись сигналов для системы выполняется в виде цифровой оптической фонограммы на кинопленке.

В отдельных моделях акустических колонок помимо стандартных регуляторов высоких/низких частот, громкости и баланса имеются кнопки для включения специальных эффектов, например, 3D-звука, Dolby Surround и др.

1.2 Практическая часть

1.2.1 Структурная схема приемо-передающего устройства для беспроводной передачи сигнала

С ростом популярности беспроводных технологий расширяется и сфера их применения. В дипломной работе рассмотрено решение, построенное на принципе передачи медиаданных по беспроводным каналам и предназначенные для объединения ПК и компонентов бытовой аудиотехники в единый мультимедийный комплекс.

Время от времени у пользователей персональных компьютеров возникает необходимость подключить это устройство к стационарной аудиоаппаратуре, например к музыкальному центру. Конечно, наиболее простым вариантом в данном случае является подключение посредством кабеля. Однако у подавляющего большинства стационарных аудиокомпонентов разъемы для подключения источников сигнала располагаются на задней панели, добраться до которой обычно не так-то просто. Вторая, более серьезная проблема - отсутствие у многих недорогих магнитол и музыкальных центров входов для подключения внешних источников сигнала.

Одним из самых универсальных способов решения подобных проблем является использование маломощных радиопередатчиков, транслирующих звуковой сигнал в УКВ-диапазоне (возможность приема программ на этих частотах реализована практически во всех современных моделях магнитол и музыкальных центров). Стоит также отметить, что транслируемый подобным образом сигнал можно принимать сразу несколькими расположенными неподалеку радиоприемниками.

В случае взаимодействия цифрового плеера с аналоговой аппаратурой (магнитолами, музыкальными центрами и т.п.) передача звука в аналоговом виде является единственно возможным вариантом. Если же рассматривать взаимодействие двух цифровых устройств (например, компьютера и медиацентра), то в данном случае предпочтительнее использовать передачу звуковых данных по беспроводному каналу в цифровом виде.

Традиционным способом передача звука от звуковой карты вашего ПК на усилитель колонок осуществляется с помощью кабелей. В дипломном проекте рассмотрена беспроводная передача звука по лазерному лучу, на расстояние до нескольких метров.

На рис. 6 изображена структурная схема приемника аудио-сигнала:

Рис. 6 - Структурная схема приемника аудио-сигнала

На рис. 7 изображена структурная схема передатчика аудио-сигнала:

Рис. 7 - Структурная схема передатчика аудио-сигнала

Первичную обмотку непосредственно нужно подключить к выходу аудио сигнала. Минус аккумулятора подключаем к одному из концов вторичной обмотки, плюс аккумулятора подключаем напрямую к плюсу лазерного диода.

Второй конец вторичной обмотки через резистор 15-47 Ом подключаем к минусу лазерного диода.

1.2.2 Выбор элементной базы для построения устройства для исследования звуковой системы ПК

Для сбора устройства для беспроводной передачи сигнала необходимо следующее оборудование: источник аудио сигнала (персональный компьютер, музыкальный центр или мобильный телефон), сетевой трансформатор, мощностью 10-15 Вт, резистор от 5 до 20 Ом и аккумулятор.

Трансформатор можно использовать любой сетевой, мощность не более 20 Вт, содержащий вторичную обмотку на 6 или 12 В., либо намотать самому (первичная обмотка - 15 витков провода 0.8 мм., вторичная обмотка - 10 витков провода 0.8 мм.).

Для приемного устройства звукового сигнала понадобится фотодиод и усилитель низкой частоты.

Светодиод используется обычный. Его можно заменить лазером (значительно увеличит расстояние передачи), который нужно будет подключить через резистор 5 Ом., 0.5 Вт. Так же источник светового луча можно дополнить оптикой от DVD привода, тем самым сконцентрировать пучок света и увеличить расстояние передачи. Аккумулятор используется Li - Ion (литий - ионный) от мобильного телефона. Вместо него, можно использовать стабилизированный блок питания на 3.5 - 4 В., с силой тока не более 1 А. Параметры солнечного модуля: максимальное напряжение 14 В., при максимальном токе 100 мА. Модуль можно заменить любым другим фотоприемником.

1.2.3 Принцип работы устройства для исследования звуковой системы ПК

Из маломощного источника звука (персональный компьютер, мобильный телефон) подается звуковой сигнал на первичную обмотку трансформатора, выходит из вторичной обмотки, усиливается с помощью аккумулятора и поступает на светодиод / лазерный диод. Фотодиод, который служит приемником аудио сигнала, напрямую подключаем к входу усилителя мощности. Далее включаем музыку и направляем луч на фотоприемник. Луч света принимает солнечный модуль, который подключен к усилителю, а усилитель мощности усиливает слабый сигнал и в итоге получается достаточно качественный звук. Вместо лазера также можно применить обыкновенный светодиод, но в таком случае дальность передачи звукового сигнала будет не более 30 сантиметров, желательно применить белые или ультрафиолетовые светодиоды от зажигалок. При использовании лазерной указки, возможно передать звуковой сигнал на дистанцию до 15 метров, и заметьте качество звука достаточно хорошее. Передаваемый звук достаточно мощный на дистанции 7 метров, усилитель при полной громкости в нагрузку выдавал 80 процентов своей мощности.

Качество передаваемого сигнала довольно хорошее, искажение звука не наблюдается.

1.2.4 Применение устройства

Такое устройство нашло очень широкое применение в науке и технике, на основе именно такого передатчика и приемника основаны лазерные микрофоны для шпионажа.

Такой прибор отличный аксессуар для компьютера, например на компьютере играет музыка, а усилитель мощности не подключен кабелем к компьютеру, таким образом также можно передавать разговор, нужно просто подать на вход устройства сигнал от микрофона (с предварительным усилителем) и в итоге получается беспроводной телефон или рация, или отличный жучек для малых дистанций.

Глава 2. Охрана труда. Меры безопасности при техническом обслуживании средств вычислительной техники

2.1 Производственная санитария и гигиена труда

запись микшер сигнал передача

В соответствии с ГОСТ 12.0.002 ССБТ «Термины и определения» производственная санитария - система организационных, санитарно-гигиенических мероприятий, технических средств и методов, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов до значений, не превышающих допустимые.

В комплекс вопросов, решаемых в рамках производственной санитарии и гигиены труда, входят:

Обеспечение санитарно-гигиенических требований к воздуху рабочей зоны;

Обеспечение параметров микроклимата на рабочих местах;

Обеспечения нормативной естественной и искусственной освещенности;

Защита от шума и вибрации на рабочих местах;

Защита от ионизирующих излучений и электромагнитных полей;

Обеспечение спецпитанием, защитными пастами и мазями, спецодеждой и спец. обувью, средствами индивидуальной защиты (противогазы, респираторы и т.п.);

Обеспечение согласно норм санитарно-бытовыми помещениями и др.

Гигиена труда или профессиональная гигиена - раздел гигиены, изучающий воздействие трудового процесса и окружающей производственной среды на организм работающих с целью разработки санитарно-гигиенических и лечебно-профилактических нормативов и мероприятий, направленных на создание более благоприятных условий труда, обеспечение здоровья и высокого уровня трудоспособности человека.

В условиях промышленного производства на человека нередко воздействуют низкая и высокая температура воздуха, сильное тепловое излучение, пыль, вредные химические вещества, шум, вибрация, электромагнитные волны, а также самые разнообразные сочетания этих факторов, которые могут привести к тем или иным нарушениям в состоянии здоровья, к снижению работоспособности. Для предупреждения у устранения этих неблагоприятных воздействий и их последствий проводится изучение особенностей производственных процессов, оборудования и обрабатываемых материалов (сырье, вспомогательные, промежуточные, побочные продукты, отходы производства) с точки зрения их влияния на организм работающих; санитарных условий труда (метеорологические факторы, загрязнение воздуха пылью и газами, шум, вибрация, ультразвук и др.); характера и организации трудовых процессов, изменений физиологических функций в процессе работы.

Производственная санитария - система организационных, профилактических и санитарно-гигиенических мероприятий и средств, направленных на предотвращение воздействия на рабочих вредных производственных факторов.

Трудовая деятельность может выполняться на открытом воздухе и в помещениях.

Производственные помещения - замкнутые пространства в любых зданиях и сооружениях, где в течение рабочего времени постоянно или периодически осуществляется трудовая деятельность людей в различных видах производства. Человек может осуществлять работу в различных помещениях одного или нескольких зданий и сооружений. При таких условиях труда необходимо говорить о рабочем месте или рабочей зоне.

Производственная среда рабочего помещения определяется комплексом факторов. Наличие этих факторов (вредностей) в рабочей среде может повлиять не только на состояние организма, но и на производительность, качество, безопасность труда, привести к снижению работоспособности, вызвать функциональные изменения в организме и профессиональные заболевания.

В современных условиях автоматизации труда на организм действует комплекс слабо выраженных факторов, изучение аффекта взаимодействия крайне затруднено, поэтому, промсанитария и гигиена труда решают следующие задачи:

учет влияния факторов трудовой среды на здоровье и работоспособность;

совершенствование методов оценки работоспособности и состояния здоровья;

разработка организационно-технологических, инженерных, социально-экономических мероприятий по рационализации производственной среды;

разработка профилактических и оздоровительных мероприятий;

совершенствовать методику обучения.

Температура и влажность воздуха в помещении являются важнейшими параметрами, определяющими состояние комфорта внутри помещения.

Рекомендуемые значения температуры воздуха в помещении по различным стандартам находятся в пределах 20-22Со и 22-26Со. Еще один физический параметр внутренней атмосферы, непосредственно влияющий на теплообмен организма человека - это влажность воздуха, характеризующая его насыщенность водяными парами. Так недостаток влажности, менее 20 % относительной влажности, приводит к пересыханию слизистых оболочек, вызывает кашель. А превышение уровня влажности, более 65%, приводит к ухудшению теплоотдачи при испарении пота, возникает чувство удушья. Поэтому температура должна соотноситься с уровнем влажности.

Скорость воздуха определяется в рабочей зоне помещения, т.е. там, где находятся люди, а именно в пространстве от 0,15м. от пола до 1,8м по высоте и на расстоянии не менее 0,15м от стен. Скорость воздуха в рабочей зоне рекомендуется в пределах 0,13-0,25м/с. При меньшей скорости - душновато или даже жарковато, при большей - просто сквозняк, допускать который имеет смысл только при повышении температуры нормативных значений.

Анализ условий труда

Оценка условий труда проводится по специальной методике, на основе анализа уровней вредных и опасных факторов на данном рабочем месте.

Для проведения аттестации рабочего места также необходимо комплексно оценить условия труда.

Определение класса условий труда на рабочих местах проводится с целью:

установления приоритетности оздоровительных мероприятий;

создания банка данных по существующим условиям труда;

определения выплат и компенсаций за вредные условия труда.

Вредный производственный фактор - фактор среды и трудового процесса, который может вызвать снижение работоспособности, патологию (профессиональное заболевание), привести к нарушению здоровья потомства.

Вредными могут быть:

физические факторы: температура, влажность и подвижность воздуха, неионизирующие и ионизирующие излучения, шум, вибрация, недостаточная освещенность;

химические факторы: загазованность и запыленность воздуха;

биологические факторы: болезнетворные микроорганизмы;

факторы тяжести труда: физическая статическая и динамическая нагрузка; большое количество стереотипных рабочих движений, большое число наклонов корпуса, неудобная рабочая поза;

факторы напряженности труда: интеллектуальные, сенсорные, эмоциональные нагрузки, монотонность и продолжительность работы.

Опасный производственный фактор - фактор среды и трудового процесса, который может вызвать резкое ухудшение здоровья, травму, смерть.

Это: электрический ток, огонь, нагретая поверхность, движущиеся части оборудования, избыточное давление, острые кромки предметов, высота и.т.п.).

Подобные документы

    Выбор методов проектирования устройства обработки и передачи информации. Разработка алгоритма операций для обработки информации, структурной схемы устройства. Временная диаграмма управляющих сигналов. Элементная база для разработки принципиальной схемы.

    курсовая работа , добавлен 16.08.2012

    Устройства записи и воспроизведения информации - неотъемлемая часть ЭВМ. Процесс восстановления информации по изменениям характеристики носителя. Коэффициент детонации. Требования, предъявляемые к точности изготовления деталей механизма транспортировки.

    реферат , добавлен 13.11.2010

    Понятие звуковой экспликации. Особенности используемой технологии записи. Схемы расположения съемочного оборудования на съемочных площадках. Обоснование выбора оборудования. Структурная схема соединения оборудования с учетом выбранной синхронизации.

    курсовая работа , добавлен 27.12.2011

    Принципы построения радиосистемы "Стрелец". Модуль беспроводной передачи данных по технологии ZigBee, преимущества и недостатки его применения, принцип действия и оценка возможностей. Описание структурной и принципиальной электрической схемы устройства.

    дипломная работа , добавлен 24.04.2015

    Развитие носителей информации. Звукозапись и процесс записи звуковой информации с целью её сохранения и последующего воспроизведения. Музыкальные механические инструменты. Первый двухдорожечный магнитофон. Звук и основные стандарты его записи.

    реферат , добавлен 25.05.2015

    Методы создания передающего устройства для приемо-передающего модуля радиовысотомера. Технико-экономическое обоснование работы. Обеспечение безопасности персонала, работающего над проектом. Классификация производства по пожароопасности и взрывоопасности.

    дипломная работа , добавлен 15.07.2010

    Основные технические характеристики автоматизированного приемо-передающего центра. Общие сведения и принцип работы прибора. Автоматическое стопроцентное резервирование радиосредств. Способы вывода приемопередатчиков в излучение, контроль устройства.

    отчет по практике , добавлен 12.02.2016

    Алгоритмы цифровой обработки данных. Схема устройства светомузыкальной установки на примере микроконтроллера ATmega8. Подача, приём и обработка звукового сигнала. Разработка гальванической развязки. Копия сигнала, который подается на высоковольтную часть.

    курсовая работа , добавлен 02.12.2014

    Структурная схема устройства передачи данных и команд. Принцип действия датчика температуры. Преобразование сигналов, поступающих с четырех каналов. Модель устройства передачи данных. Построение кода с удвоением. Формирование кодовых комбинаций.

    курсовая работа , добавлен 28.01.2015

    Схема кодирования звуковой информации. Аналоговая и дискретная формы представления информации. Выделение количества уровней громкости в процессе кодирования звуковой информации. Качество двоичного кодирования звука. Расчет информационного объема.

для IBM PC

ВВЕДЕНИЕ

Взаимодействие человека с ЭВМ должно быть прежде всего взаимным (на то оно и общение). Взаимность, в свою очередь, предусматривает возможность общения как человека с ЭВМ, так и ЭВМ с человеком. Неоспоримый факт, что визуальная информация, дополненная звуковой, гораздо эффективнее простого зрительного воздействия. Попробуйте, заткнув уши, пообщаться с кем-нибудь хотя бы минуту, сомневаюсь, что вы получите большое удовольствие, равно как и ваш собеседник. Однако пока многие ортодоксально настроенныепрограммисты/проектировщики до сих пор не хотят признавать, что звуковое воздействие может играть роль не только сигнализатора, но информационного канала, и соответственно от неумения и/или нежелания не используют в своих проектах возможность невизуального общения человека с ЭВМ, но даже они никогда не смотрят телевизор без звука. В настоящее время любой крупный проект, не оснощенный средствами multimedia (в дальнейшем под словом "средства multimedia" мы будем прежде всего понимать совокупность аппаратно/программных средств, дополняющие традиционно визуальные способы взаимодействия человека с ЭВМ) обречен на провал.

ОСНОВНЫЕ МЕТОДЫ ОЗВУЧИВАНИЯ

Есть много способов заставить компьютер заговорить или заиграть.

1. Цифроаналоговое преобразование (Digital to Analogue (D/A)conversion). Любой звук (музыка или речь) содержаться в памяти компьютера в цифровом виде (в виде самплов) и с помощью DAC трансформируются в аналоговый сигнал, который подается на усиливающую аппаратуру, а затем на наушники, колонки, etc.

2. Синтез. Компьютер посылает в звуковую карту нотную информацию,а карта преобразует ее в аналоговый сигнал (музыку). Существует два способа синтеза:

а) Frequency Modulation (FM) synthesis , при котором звук воспроизводит специальный синтезатор, который оперирует математическим представлением звуковой волны (частота, амплитуда, etc) и из совокупности таких искусственных звуков создается практически любое необходимое звучание.

Большинство систем, оснащенных FM-синтезом показывают очень неплохие результаты на проигрывании "компьютерной" музыки, но попытка симулировать звучание живых инструментов неочень хорошо удается. Ущербность FM-синтеза состоит в том,что с его помощью очень сложно (практическиневозможно) создать действительно реалистическую инструментальную музыку, с большим наличием высоких тонов (флейта, гитара, etc). Первой звуковой картой, которая стала использовать эту технологию, был легендарный Adlib, которыйдля этой целей использовал чип из синтеза YamahaYM3812FM. Большинство Adlib-совместимых карт (SoundBlaster,Pro Audio Spectrum) также используют эту технологию, толькона других более современных типах микросхем, таких какYamaha YMF262 (OPL-3) FM.

б) синтез по таблице волн (Wavetable synthesis), при этомметоде синтеза заданный звук "набирается" не из синусов математических волн, а из набора реально озвученных инструментов - самплов. Самплы сохраняются в RAM или ROM звуковой карты. Специальный звуковой процессор выполняет операции над самлами (спомощью различного рода математическихпреобразований изменяется высота звука, тембр, звук дополняется спецэффектами).

Так как самплы - оцифровки реальныхинструментов, они делают звук крайне реалистичным. До не давнего времени подобная техника использовалась только вhi-end инструментах, но она становится все более популярной теперь. Пример популярной карты, использующей WSGravis Ultra Sound (GUS).

3. MIDI. Компьютер посылает на MIDI-интерфейс специальные коды,каждый из которых обозначает действие, которое должен произ вести MIDI-устройство (обычно это синтезатор) (General) MIDI- это основной стандарт большинства звуковых плат. Звуковаяплата, самостоятельно интерпретирует, посылаемые коды и приводит им в соответствие звуковые самлы (или патчи), хранящиеся в памяти карты. Количество этих патчей в стандарте GM равно 128. На PC - совместимых компьютерах исторически сложилисьдва MIDI-интерфейса: UART MIDI и MPU-401. Первый рализован вSoundBlaster"s картах, второй использовался в ранних моделяхRoland.

ЗВУКОВЫЕ ВОЗМОЖНОСТИ СЕМЕЙСТВА IBM PC

Уже на самых первых моделях IBM PC имелся встроенный динамик, который однако не был предназначен для точного воспроизведения звука: он не обеспечивал воспроизведения всех частот слышимого диапазона и не имел средств управления громкостью звучания. И хотя PC speaker сохранился на всех клонах IBM до сего дня - это скорее дань традиции, чем жизненная необходимость, ибо динамик никогда не играл сколь-нибудь серьезной роли в общении человека с ЭВМ.

Однако, уже в модели PCjr появился специальный звуковой генератор TI SN76496A, который можно считать предвестником современных звуковых процессоров. Выход этого звукового генератора, мог быть подключен к стерео-усилителю, а сам он имел 4 голоса (не совсем корректное высказывание - на самом деле микросхема TI имела четыре независимых звуковых генератора, но с точки зрения программиста это была одна микросхема, имеющая четыре независимых канала). Все четыре голоса имели независимое управление громкостью и частотой звучания. Однако из-за маркетинговых ошибок модель PCjr так и не получила широкого распространения, была об"явлена неперспективной, снята с производства и поддержка ее была прекращена. С этого момента фирма IBM больше не оснащала свои компьютеры звуковыми средствами собственной разработки. И с этого момента место на рынке прочно заняли звуковые платы.

ОБЗОР ЗВУКОВЫХ КАРТ

Своеобразный "внебрачный сын" PC и желания человека услышатьприличный звук с минимумом финансовых затрат. Covox недаромназывают "SoundBlaster для бедных" ибо стоимость его на порядок ниже самой дешевой звуковой карты. Суть Covox"a крайнепроста - на любой стандартной IBM-совместимой машине обяза тельно присутствует параллельный порт (обычно он используется под принтер). На этот порт можно посылать 8-ми битовые коды, которые после простого смешивания на выходе дадут вполнеудовлетворительное mono звучание.

К сожалению из-за того, что основные производители программного обеспечения игнорировали это простое и остроумное устройство (сговор с производителями звуковых карт), то никакойпрограммной поддержки covox так и не получил. Однако, не составляет труда самостоятельно написать драйвер для covox"a и заменить им драйвер любой 8-ми битовой звуковой карты, котораяиспользуется в DAC-режиме, или немного изменить код программы,перенаправив 8-ми битовую оцифровку, скажем в 61-ый порт ППИ.

The SoundBlaster Pro (SB-pro) The Creative Labs" SoundBlaster (SB) была первой Adlib-совместимой звуковой картой, которая могла записывать и играть 8-ми битовые самплы, поддерживала FM-синтез с помощь микросхемы Yamaha YM3812. Оригинальная mono-модель SB была оснащена одной такой микросхемой, а более новая стерео-модель - двумя. Наиболее продвинутая модель из этого семейства SB-pro. 2.0, эта карта содержит наиболее современную микросхему FM-синтеза (стандарт OPL-3). SB-pro способен производить оцифровку/проигрывание реального звука с частотой до 44.1 Hz (частота CD-проигрывателей) в стерео режиме. Также с помощь внешних драйверов эта карта поддерживает General MIDI интерфейс. Содержит встренный 2-х ватный предусилитель и контроллер CDD (обычно Matsushita).

External line in.

SB compatible MIDI,

SB CD-ROM interface.

SB-pro была полностью совместима с Adlib-картой, что обеспечила ей потрясающей успех на рынке недорогих домашних звуковых систем (прежде всего это касалось игр). И хотя профессионалы были недовольны неестественным "металлическим" звуком, да и симуляция MIDI оставляла желать лучшего, но эта карта пришлась по вкусу многочисленным поклонникам компьютерных игр, которые стимулировали разработчиков вставлять в свои игры поддержку SundBlaster-карт, чем окончательно закрепили лидерство Creative Labs на рынке. И теперь любая программа, которая претендует на то, что бы издавать звук на чем-то отличным от PC-speaker просто обязана поддерживать, ставшим de-facto стандартом SB. В противном случае она рискуeт быть просто не замеченной.

SoundBlaster 16 (SB 16) это улучшенная версия SB-pro,котoрая способна записывать и воспроизводить 16-и битовый стерео-звук. И конечно SB16 полностью совместима с Adkib & SB. SB-16 способна проигрывать 8-и и 16-и битовые стерео самплы на частоте до 44.1 KHz с динамической фильтрацией звука (эта карта позволяет в процессе проигрывания подавить нежелательный диапазон частот). SB16 также может быть оснащен специальной микросхемой ASP (Advanced (Digital) Signal Processor), который может осуществляю компрессию/ декомпрессию звука "на лету", разгружая тем самым CPU для выполнения других задач. Подобно SB-pro SB-16 осуществляет FM-синтез с помощью микросхемы Yamaha YMF262 (OPL-3). Также возможно дополнительно установить специальную плату расширения WaveBlaster, который обеспечивает более качественное звучание в режиме General MIDI.

Pro Audio Spectrum Plus and Pro Audio Spectrum 16 The Media Vision"s

Pro Audio Spectrum Plus и -16 (PAS+ and PAS-16), это одна из многих попыток пополнить семейство SB-подобных карт. Обе карты почти идентичны, исключая то, что PAS-16 поддерживает 16-и битовый самплинг. Обе карты способны доводить частоту проигрывания до 44.1 KHz, динамически фильтровать звуковой поток. Подобно SB-pro и SB-16, PAS осуществляет FM-синтез через микросхему Yamaha YMF262 (OPL-3)

Поддерживаемые входные устройства:

External line in.

PC speaker (wow !).

Поддерживаемые выходные устройства:

Audio line out (headphones, amplifier),

SCSI (not just for CD-ROM, but also for tape-streamers,

optical drives, etc),

General MIDI (requires optional MIDI Mate),

Несмотря на то, что Media Vision утверждает, что ее изделия полностью совместимы со стандартом SB, однако это не совсем так и многие люди получали неприятные неожиданности от этой карты, когда пытались использовать ее как SB. Однако, это некоторым образом компенсируется великолепным стерео-звучанием и очень низким уровнем шумов.

The Gravis UltraSound

The Advanced Gravis"

Gravis UltraSound (GUS) это несомненный лидер в области WS-синтеза. Стандартный GUS имеет "на борту" 256 или 512 килобайт памяти для хранения самплов (называемых так же патчами), с помощью проигрывания которых GUS и генерирует все звуковые эффекты и музыку. GUS может работать на частоте самплирования до 44.1 KHz и может осуществлять 16-и битовое стерео-звучание. С записью несколько сложнее - первоначально стандартные модели GUS осуществляли только 8-и битовую запись звука, но новые модели (GUS MAX) способны осуществлять и 16-и битовую запись. В целом звук, воспроизводимый GUS"ем является более реалистичным (из-за использования WS-синтеза, вместо FM), ну и разумеется GUS обеспечивает великолепную поддержку General MIDI из-за того, что ему нет необходимости "конструировать" все разнообразие звуков из набора синусообразных волн, - в его распоряжении находится специальная библиотека размером около 6M, инструменты из которой он может загружать в процессе воспроизведения.

Поддерживаемые входные устройства:

Audio Line In.

Поддерживаемые выходные устройства:

Audio Line Out,

Amplified Audio Out,

Speed compensating joystick (up to 50 Mhz),

General MIDI (requires optional MIDI adapter),

SCSI CD-ROM (requires optional SCSI interface card).

GUS не является SB-совместимой картой и не поддерживает стандарта SB или Adlib. Некоторая совместимось, однако может быть достигнута путем программной эмуляции с помощью специальных драйверов SBOS (Sound Board Operating System), поставляемых вместе с GUS"ем. Однако на практике, удовлетворительная работа SBOS явление скорее случайное, чем закономерное. Кроме того SBOS значительно замедляет работу процессора, что делает практически непригодным GUS для работы multimedia приложения, написанных исключительно для SB. Все же исключительные звуковые качества GUS"я заставили производителей программного обеспечения включать драйверы для этой карты в свои изделия. И хотя поддержка стандарта GUS еще не стало таким-же обычным делом, как и поддержа стандарта SB, но не вызывает никакого сомнения, что второй по значимости после SB является карта GUS.

Проблемы продвижения GUS на современный игровой рынок затруднено тем, что в настоящее время 45% игр пишется на Miles Design AIL 2.0 - 3.15, 50% на HMI SOS 3.0 - 4.0, остальные 5% на самопальных звуковых библиотеках. Как следует поддерживать GUS научилась только AIL 3.15 и то только почти. До этого (AIL 3.0-, HMI 4.0-) перед загрузкой игры запускалась LOADPATS.EXE или что-то подобное (MEGAEM...), которая грузит все (!!!) тембры, которые использует данная игра (а всего в стандартной 512-и килобайтной памяти GUS"я помещается 30-50 тембров), в AIL 3.15 чуть-чуть гуманнее - тембры грузятся по мере надобности (почти) но не выгружаются(!!), таким образом ситуция сводится к предыдущей. Я уж молчу, что оригинальные тембры используют редкие единицы фирм производителей и очень хорошо понимаю остальных - ради одного GUS"а покупать тембры и "перетягивать" музыку нет смысла. Hе говоря уже о проблемах производителей с созданием музыки под стандартные тембры и придумывании, как бы их запихнуть в 512/256K.

The Roland LAPC-1 and SCC-1

The Roland LAPC-1 это полупрофессиональная звуковая карта, базирующаяся на Roland MT-32Module. LAPC тождественнен MIDI-интерфейсу на PC-картах. Он содержит 128 инструментов. LAPC-1 использует комбинированный способ построения звучания ноты: каждая нота состоит из 4 "partials", каждый из которых может быть самплом или простой звуковой волной. Общее число partials"ов ограниченно 32"я, следовательно одновременно может играть всего 8 инструментов,также присутствует 9-ый канал для перкуссии. Помимо 128-и инструментов LAOC-1 содержит 30 перкуссионных звуков и 33 звуковых эффекта. The SCC-1 это дальнейшее развитие LAPC-1. Подобно LAPC-1 он содержит MPU-MIDI интерфейс, но в в свою очередь является полноценным WS-синтез картой. Он содержит 317 самплов (патчей), зашитых во внутреннюю память ROM. Патч может состоять из 24 partials"ов, но большинство патчей состоят из одного partials"a. Одновременно может быть проигранно 15 инструментов и одна перкуссия. Хотя возможность изменения внутренних самплов отсутствует, это в какой-то мере компенсируется наличием двух звуковых эффектов: hall и echo. Одним из самых серьезных недостатков карт семейства Roland является то, что ни одна из них не оснащена DAC/ADC, и не содержит контроллера CD-ROM, что делает невозможным ее применение в системах multimedia, удовлетворяющих стандарту MPC.

Качество звучания LAPC-1 очень высоко. Некоторые патчи (подобно пианино или свирели) превосходят по качеству аналогичные инструменты GUS"я. Качество воспроизводимых звуковых эффектов также очень высоко. Качество звука SCC-1 можно признать просто выдающимся. Что заставляет признать карты Roland одними из лучших для создания профессиональной инструментальной музыки, однако они полностью непригодны для эксплуатации их в системах multimedia. Кроме того карты Roland не обладают совместимостью ни с одним современным звуковым стандартом.

Другие карты

Adlib и SB совместимая карта с SCSI и MIDI-интерфейсом.

Базируется на микросхеме Yamaha OPL-3 FM. 20 каналов.

Улучшенное качество звука по сравнению с оригинальным Adlib"ом.

12-и битовый самплинг и игра на частоте до 44.1 KHz.

Подобно Adlib Gold 1000, но осуществляет 16-и битовый самплинг.

Базируется на микросхеме Yamaha YMF3812 FM. 11 каналов.

8-ми битовое моно звучание на частоте до 22 KHz. Совместима состандартом SB. Содержит MIDI-интерфейс.

Adlib и SB совместимая карта, базирующаяся на микросхемеYamaha YM3812FM. 11 каналов. 8-ми битовое стерео звучание начастоте до 44.1 KHz. Содержит MIDI-интерфейс.

Turtle Beach MultiSound

Базируется на микросхеме Motorola 56001 DSP. Содержит 384 16-тибитовых самплов. 15 каналов. Спецэффекты. Стерео звучание начастоте до 44.1 KHz. Не совместима ни с каким другим стандартом.

AudioBahn 16 from Genoa Systems

Базируется на микросхеме Arial from Sierra semiconductor.

Adlib и SB совместимая карта c SCSI и MIDI-интерфейсом. Содер жит 1M самплов в ROM. 32 канала. 16-ти битовое стерео звучаниена частоте до 44.1 KHz.

ТХХ ЗВУКОВЫХ ПЛАТ: ОСНОВНЫЕ ПОНЯТИЯ

Перед тем как перейти к следующему разделу, который затрагивает практические вопросы приобретения звуковой платы, необходимо оговорить ряд терминов:

Частотная характеристика (FrequencyResponse)

Показывает насколько хорошо звуковая система воспроизводит звук во всем частотном диапазоне. Идеальное устройство должно одинаково передавать все частоты от 20 до 20000 Гц. И хотя на практике на частотах выше 18000 и ниже 100 может наблюдаться снижение характеристики на величину -2дБ из-за наличия фильтра высоких/низких частот, однако считается что отклонение ниже -3дБ недопустимо.

Отношение сигнал/шум (S/N Ratio)

Представляет собой отношение значений (в дБ) неискаженного максимального сигнала платы к уровню шумов электроники, возникающих вы собственных электрических схемах платы. Так как человек воспринимает шум на разных частотах по-разному, была разработана стандартная сетка А-взвешивания, которая учитывает раздражающий уровень шума. Это число обычно и имеется ввиду, когда говорят о S/N Ratio. Чем это соотношение выше, тем звуковая система качественнее. Снижение этого параметра до 75 дБ недопустимо.

Шумыквантования

Остаточные шумы, характерные для цифровых устройств, которые возникают из-за неидеального преобразования сигнала из аналоговой в цифровую форму. Этот шум может быть измерен только в присутствии сигнала и показывается как уровень (в дБ) относительно максимально допустимого выходного сигнала. Чем меньше этот уровень, тем качество звука выше.

Суммарные нелинейные искажения (total harmonic distortion + noise) Отражает влияние искажений, вносимых аппаратурой усиления звука и шумов, генерируемых самой платой. Он измеряется в процентах от уровня неискаженного выходного сигнала. Устройство с уровнем помех более 0.1% не может считаться качественным.

Разделение каналов

Просто число, показывающее до какой степени левый и правый каналы остаются взаимно независимыми. В идеале разделение каналов должно быть полным (абсолютный стереоэффект), однако на практике наблюдается проникновение сигналов из одного канала в другой. На качественном stereo-device разделение каналов не должно быть меньше 50 дБ.

Динамический диапазон

Выраженная в дБ разность между max и min сигналом, которая плата может пропустить. Обычно динамический диапазон измеряется на частоте 1Khz. В идеальной цифровой аудиосистеме динамический диапазон должен быть близок к 98дБ.

Интермодуляционные искажения

Потенциальное усиление

Максимальный коэффициент усиления, обеспечиваемый предусилителем звуковой платы. Желательно иметь высокое потенциальное усиление при низком входном напряжении. Низким считается напряжение в 0.2В, которое соответствует типичному выходному сигналу бытового магнитофона.

КАКУЮ ПЛАТУ ВЫБРАТЬ?

Как можно было увидеть выше в данный момент на рынок выброшено просто огромное число звуковых систем для персональных компьютеров. Следовательно выбор звуковой платы становиться делом нелегким, ведь каждая из них имеет свои достоинства и недостатки, и не существует абсолютных фаворитов, как и абсолютных аутсайдеров. И все же возьмем на себя смелость, в заключение, дать несколько советов тем, кто собрался оснастить свой компьютер современной звуковой системой.

1. В любом случае следует остановить свой выбор на 16-и битовойзвуковой плате, которая поддерживает частоту дискретизации неменее 44Khz. Это даст вам потенциальную возможность слушатьзвук с качеством CD-диска.

2. Если вы собираетесь оснастить свой компьютер накопителемCD-ROM, то желательно что бы выбранная вами звуковая картауже несла на себе контроллер CD-ROM"a, выбранной вами конструкции.

3. Ну и наконец следует определиться для каких целей вам необходима звуковая система, насколько высокие требования выпред"являете к звуковой карте и какой суммой денег вы можетепожертвовать. Все это заставляет разбить все множество звуковых плат на несколько классов. Внутри каждого класса звуко вые системы обладают примерно одинаковым качеством, что значительно облегчает выбор.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. P.Norton "Programmer"s guide to the IBM PC"- Microsoft Press 1985

2. Толковый словарь по вычислительным системам / под редакциейВ.Иллингуорта и др. - М, Машиностроение, 1989

3. PC Magazine/Russian edition, 07.95- SK Press, Moscow

4. Sound Card review by Jerry van Waardenberg- comp.sys.ibm.pc.soundcard