Как и чем тушить литиевые аккумуляторы: причины возгораний. Почему литий-ионные батареи могут взрываться

Други, я думаю все из нас уже слышали об опасности литиумных батарей (всё нижесказанное применимо в полной мере и к ионно-литиевым , Li-ion). В интернет-новостях многие читали (или видели через архаичное телевизионное устройство, которое у многих уверен ещё эксплуатируют их родители), что целые самолеты падают от их внезапных взрывов-самовозгораний, потому к примеру с 16 мая 2012 года USPS (гос.почта США) отказалась принимать для перевозок литиумные батареи (кстати, именно поэтому уже не получится таким способом невозбранно заказывать с eBay всякие iPad, iPhone и другую похожую технику из Америки).

В других же случаях обладатели некоторых телефонов были рандомно убиты их непроизвольным взрывом в самих повседневных условиях, и что называется, на ровном месте. В этом плане старая церковная концепция «провидение Господне » продолжает исправно работать и на рубеже веков, как бы это не хотелось некоторым нынешним адептам научно-технического культа.

Если вы вообще читаете инструкции к зарядкам, то там сказано: нельзя оставлять на зарядку устройство без дальнейшего присмотра (например, заряжать ночью, пока все спят), нельзя ставить, скажем, DEC-телефон на базу и уходить из дома по делам, нельзя в таком же случае оставлять на зарядке ноутбук...

Кстати о последнем. Предлагаю вам свой фото-отчет из первых рук, что порой случается с такими батареями. Сие произошло примерно год назад в нашем офисе с ноутбуком моего коллеги. Неправда, что говорят, что эта участь лишь левых аккумуляторов с мутно-азиатским корнями происхождения — сегодня речь пойдет о сравнительно новом брэндовом ноутбуке DELL Inspiron , купленном в фирменном американском магазине. До сего момента никаких странностей в нём не было замечено, он до сего случая был исправно работающим на оригинальной заводской батарее (внимание, под катом много фоток, трафик).

Адский HELL DELL

Перед демонстрацией ещё раз подчеркиваю, что не было никакого предварительного проливания чего-либо на ноутбук, не было никакого зловредно-циничного ковыряния скрепкой презренного офисного клерка в его нутрях и так далее — это был обычный солнечный рабочий день и мирно работающий ноутбук с запущенным там Excel , и вдруг... в ноуте что-то начинает зверски трещать и попутно из него начинает валить столб дыма, а на яростные крики его владельца, пугливо вжавшегося в противоположную стену от рабочего стола — сбегается весь офис... и вот последствия того, что произошло с ноутбуком в итоге.

В данном случае никто не пострадал, по гарантии ноутбук был быстро заменён, как принято писать в таких случаях — все отделались «лишь легким испугом».

Ещё кейзы с офисной передовой

А вот ниже взяты фотки из новостей уже применительно к телефонам — их владельцам в большинстве случаев не посчастливилось отделаться легким испугом — есть смерти, инвалидности, оторванные руки-ноги и прочие не совсем приятные последствия неуёмного научно-технического прогресса.

Здесь в частности приведу ещё один реальный пример. Самопроизвольно взорвалась батарея мобильного телефона Nokia N71 , батарея с оглушительным свистом пролетела около четырех метров и выжгла приличную дыру в ковролине. К счастью на столе стояла бутылка с минералкой, которой мы успели сразу залить открытое пламя, так что никто не пострадал. Кот был в панике, мы, впрочем, тоже.

Опять же отдельно обращаю внимание: это была оригинальная батарея Nokia, не китайская (на фото ниже она лежит на инструкции изделия Samsung — не обращайте на это внимания, просто на момент происшествия телефон Nokia лежал именно так). Поэтому универсальная отговорка-отмашка производителей — хотите жить, покупайте только оригинальную продукцию (батареи), не всегда реально что-то гарантирует.

Ниже обещанные фотки об инциденте:


В заключении, прикольный ролик с испытаниями ноутбуков (вернее их батарей) — вот так примерно всё и происходит в жизни. В начале ролика видео-сцена из реальной жизни офиса — очень похоже на вышепоказанное, но только в динамике.

А вот под конец ролика (середину и бла-бла-бла советую промотать) — лабораторная демонстрация всех стадий самоуничтожения батареи ноутбука, что также весьма и весьма полезно посмотреть, «во избежании».

Если такой смертоносный процесс запущен и вам вдруг показалось что всё, пронесло, — всё наконец-то выгорело и можно посмотреть что же там случилось, — не приближайтесь к адскому прибору, потому как горение таких батарей в большинстве случаев носит каскадно-цикличный характер, то есть за фазами тишины и безмятежности может запросто последовать очередной взрыв и разлетающиеся куски раскаленного металла и пластмассы.

И что теперь делать-то?

В заключение: будьте осторожны с зарядкой, всегда отключайте электроприборы когда покидаете своё жилье и офис своего работодателя (если вы только не уходите от него насовсем), а для программистов специально — не спите как коты на теплой крышке своего ноутбука, когда хочется немного прилечь-отдохнуть под утро, после «безумной программерской ночи» позади — ваша голова будет мирно покоится на аккумуляторе средней мощностью в 5000mAh , от чего ваш глубокий и здоровый сон может однажды трагически прерваться.


LP Guard - специальный защитный пакет для заряжаемого смартфона и других небольших устройств

При этом программист, работая за ноутбуком никогда не должен забывать, что он — воин, поэтому он должен иметь всегда все дела завершенными, код чистым и отрефакторенным, исходники синхронизированными со своим Github-хранилищем, дабы быть готовым спокойно отойти в мир иной в любой самый неожиданный для него момент.

И давайте наберемся смелости чтобы сказать главное: носить мобилку в карманах своих штанов — это не просто слепая дань нашему времени, это наш вызов обстоятельствам, это наш каждодневный подвиг и способ громко заявить о своей несгибаемой мужской самости и мускулинности.

В то время как литий-ионные батареи в целом невероятно безопасны, они очень редко загораются или взрываются. Когда это происходит, например, с Galaxy Note 7 от Samsung или недавним отзывом ноутбука HP, это всегда большие новости. Итак, что происходит и почему батареи иногда выходят из строя? Расскажем в этой статье.

Аккумуляторные литий-ионные батареи — это тип батареи, которая находится внутри Вашего ноутбука, телефона, планшета и почти любого другого современного гаджета, который у Вас есть, а также электрические автомобили и самолеты.

Что внутри литий-ионной батареи?

Чтобы понять, почему литий-ионные батареи иногда взрываются, Вам нужно знать, что происходит внутри. Внутри каждой литий-ионной батареи есть два электрода: положительно заряженный катод и отрицательно заряженный анод, разделенный тонким слоем микроперфорированного пластика, который удерживает два электрода от касания. Когда Вы заряжаете литий-ионную батарею, ионы лития выталкиваются электричеством из катода, через микроперфляции в сепараторе и электропроводящей жидкости, а также в анод. Когда батарея разряжается, происходит обратное с ионами лития, текущими от анода к катоду. Это реакция, которая питает Ваш ноутбук.

Маленькие батареи, такие как у смартфонов, обычно имеют только одну литий-ионную ячейку. Большие батареи, как и ноутбуках, обычно имеют от 6 до 12 литий-ионных элементов. Батареи в электрических машинах и самолетах могут иметь сотни ячеек.

Что делает литий-ионную батарею взрывоопасной?

То, что делает литий-ионные батареи полезными, также дает им способность загореться или взорваться. Литий действительно хорош в хранении энергии. Когда он выпущен как струйка, он весь день заряжает Ваш телефон. Когда он будет выпущен весь за один раз, батарея может взорваться.

Большинство литий-ионных батарейных пожаров и взрывов сводится к проблеме короткого замыкания. Это происходит, когда пластиковый сепаратор выходит из строя и позволяет касаться анода и катода. И как только эти двое соприкасаются, батарея начинает перегреваться.

Существует ряд причин, по которым разделитель может выйти из строя:

  • Дефекты дизайна или изготовления: аккумулятор плохо разработан, как в случае с Galaxy Note 7. В этом случае недостаточно места для электродов и сепаратора в батарее. В некоторых моделях, когда батарея немного увеличилась при зарядке, электроды согнулись и вызвали короткое замыкание. Даже хорошо спроектированная батарея может выйти из строя, если контроль качества не будет достаточно тщательным или есть дефект в производстве.
  • Внешние факторы: Экстремальное тепло почти гарантированно вызывает отказ. Известно, что батареи, находящиеся слишком близко к источнику тепла или попавшим под огонь, взрываются. Другой внешний фактор может привести к сбою литий-ионной батареи. Если Вы проткнете батарею (случайно или намеренно), то Вы почти наверняка вызовете короткое замыкание.
  • Проблемы с зарядным устройством: плохо сделанное или плохо изолированное зарядное устройство также может повредить литий-ионный аккумулятор. Если зарядное устройство замыкает или генерирует тепло рядом с батареей, оно может нанести достаточный урон, чтобы вызвать сбой. Поэтому мы рекомендуем использовать только официальные зарядные устройства (или, по крайней мере, высококачественные сторонние устройства от уважаемых брендов). Литий-ионные аккумуляторы имеют встроенные средства защиты, чтобы остановить их перезарядку. Хотя очень редко, если эти меры предосторожности терпят неудачу, перезарядка приводит к перегреву батареи.
  • Несколько ячеек: хотя они не имеют отношения к батареям с одной ячейкой, подобным тем, которые присутствуют на большинстве смартфонов (на самом деле у iPhone X есть две ячейки), только одна батарейная ячейка должна быть неисправна чтобы испортить всю батарею. Как только одна ячейка перегревается, Вы получаете эффект домино, называемый «Thermal Runaway». Для батарей с сотнями ячеек, подобных тем, что у Tesla Model S-thermawaway, потенциально может быть действительно большой проблемой.

Несмотря на то, что литий-ионные батареи иногда взрываются — это безопасная и зрелая технология. Тот факт, что это всегда новости, когда батарея взрывается неожиданно, показывает, насколько редко случаются эти большие неудачи. Производители аккумуляторов устанавливают множество мер предосторожности для предотвращения сбоев батарей или, по крайней мере, смягчают ущерб, который может вызвать сбой.

Пользователи смартфонов и планшетов конечно знают о проблеме взрывоопасности литиевых аккумуляторов своих гаджетов. И за яркими примерами далеко ходить не приходится. Недавно, например, компания Самсунг столкнулась с наболевшей проблемой лично, и была вынуждена отозвать первую серию нового Note 7, поскольку аккумуляторы взрывались прямо в процессе зарядки. Так или иначе, проблема остается таковой с начала появления сотовых телефонов, ИКАО даже в 2016 году запретила к перевозке в грузовых отсеках гражданского транспорта коммерческие партии .

Дело в том, что в процессе заряда литиевого аккумулятора в мобильном устройстве, при помощи встроенного в аккумулятор микроконтроллера реализуется довольно сложный алгоритм осуществления этого процесса, чтобы температура батареи не выходила бы за пределы приемлемого температурного диапазона. Контроллер отслеживает для этой цели многие параметры батареи в процессе ее зарядки.

Кроме непосредственно процесса зарядки, хранение аккумулятора тоже требует соблюдения некоторых правил, особенно касательно температуры: нельзя ни перегревать, ни переохлаждать аккумулятор.

Основная проблема, приводящая к взрыву аккумуляторов — это чрезмерный разогрев электролита из-за превышения допустимой температуры или вследствие короткого замыкания внутри аккумуляторной ячейки . Цепная реакция легко инициируется внутри перегревшейся ячейки, ведь щелочной металл литий очень легко воспламеняется, вследствие чего батарея вздувается и в худшем случае — взрывается.

И даже несмотря на наличие «внимательного» контроллера, случайный заводской брак (недостаточная толщина изолятора между ячейками) может иметь место и привести к печальным последствиям.

Конечно опасны удары, пробои, проколы, перегрев на солнце. Даже если батарея упала и слегка ударилась, внутри может произойти нарушение изолятора, и в дальнейшем это возможно приведет к внезапной неприятности, даже без явного перегрева.

Анод и катод литий-ионного аккумулятора разделены сепаратором из пористого полимера. Катод имеет на себе активный материал, в качестве которого зачастую применяют оксиды переходных металлов, в которые встроены ионы лития. Анод, как правило, графитный. Органический раствор солей лития используется в качестве электролита.

При первой зарядке на заводе, литий встраивается в анод и на электродах образуется слой разложившегося электролита, который теперь служит защитой от лишних реакций, оставаясь при этом ион-проводящим.

Как отмечалось выше, внутреннее короткое замыкание — одна из основных причин самовозгорания аккумулятора. Причиной же самого короткого замыкания может стать физическое повреждение или заводской брак, типа неровной нарезки электродов или попадания металлических частиц между катодом и анодом, которые нарушают целостность слоя сепаратора.

Еще одна причина замыкания — прорастание цепочек металлического лития через сепаратор (если ионы лития еще на заводе не успели до конца встроиться в кристалл анода из-за чрезмерно быстрой зарядки или от переохлаждения, либо если емкость активного материала катода больше емкости анода, что приводит к отложениям на аноде, которые потом медленно, но неумолимо растут).

Так вот, если короткое замыкание произошло, то температура аккумулятора начинает подниматься, и при достижении 70-90°C начинается разложение защитного ион-проводящего слоя анода. Литий анода реагирует с электролитом, при этом выделяются горючие углеводороды, такие как этилен, метан, этан и т. д. Но до возгорания еще рано, ведь не хватает кислорода.

Между тем экзотермическая реакция идет и температура растет, давление внутри корпуса аккумулятора повышается. При 180-200°C начинается реакция диспропорционирования на катоде, где и выделяется кислород. Происходит воспламенение, температура резко повышается, а электролит термически разлагается, температура уже 200-300°C.

Наконец, наступает очередь графита, и с достижением температуры в 660°C начинает плавиться алюминий токоприемника. Максимальная температура во всем этом процессе обычно не успевает превысить 900°C, поскольку все быстро заканчивается полным разложением внутренних компонентов аккумулятора.

Уже есть успехи в поисках решения проблемы

Для решения проблемы производителям смартфонов можно ужесточить регулирование, сделать дополнительные предохранители в аппаратах и в аккумуляторах, усложнить контроллеры, однако это приведет к удорожанию аккумуляторов и всей продукции, в комплекте с которой аккумулятор продается. Компании конкурируют между собой, и просто экономически не могут пойти на это.

А тем временем за безопасность литиевых аккумуляторов борются физики из Стенфорда, которые еще летом 2015 года разработали специальный защитный механизм, встраиваемый в аккумулятор уже на стадии производства.

По сути речь идет о новом виде литиевых батарей, которые автоматически отключаются при достижении их внутренностями потенциально опасной температуры (что и предотвращает процесс, приводящий к последующему возгоранию), а через некоторое время, после остывания, автоматически включаются вновь.

Разработка велась несколько лет коллективом из нескольких человек (в числе которых Чженань Бао), в итоге получилась батарея, лишенная двух главных недостатков — резкого снижения емкости аккумулятора после нескольких циклов перезаряда и, что более важно, склонности к возгораниям и взрывам из-за перегрева (цепная реакция автоматически останавливается).

Решение пришло к ученым совсем из другой области физики. Они делали термометры используя наночастицы никеля, встроенные в тонкий лист из графена и пластика. Это были необычные термометры. В покое частицы никеля друг с другом соприкасались, то есть получался хороший проводник тока. Но когда лист разогревался, пластик начинал немного расширяться, что приводило к ослаблению контакта между проводящими никелевыми частичками, и сопротивление всего проводника возрастало.

Вот это свойство и применили исследователи из Стенфорда для мгновенной автоматической защиты литиевых батарей и для полного автоматического восстановления контакта после остывания. Они приклеили лист такого пластика к одному из электродов батареи, чтобы он терял проводимость с ростом температуры. И когда температура достигает 70°C

Но несмотря на найденное решение, производители мобильных устройств все равно не решаются резко менять наработанную годами технологию производства своих аккумуляторов. Поэтому пользователям гаджетов придется еще на некоторое время смириться с наличием потенциальной опасности литиевых батарей, и стараться не ронять и не перегревать свои мобильные устройства, а тем более аккумуляторы. Возможно в скором будущем проблема будет полностью решена.

27 сентября 2016 в 21:38

Kак взрываются литий-ионные аккумуляторы

  • Энергия и элементы питания ,
  • Химия

Последнее время тема самовозгорания литий-ионных аккумуляторов часто мелькает в заголовках новостей: то смартфон загорится, то ховерборд, а то и автомобиль. Так что же происходит внутри аккумулятора во время термического разгона и почему возникает самовозгорание?

Чаще всего причиной самовозгорания аккумуляторов является короткое замыкание внутри электрохимической ячейки. Электрический контакт между анодом и катодом может возникнуть по многим причинам. Это может быть, например, механическое повреждение ячейки. Ещё внутреннее короткое замыкание возникает из-за нарушения технологии производства при неровной нарезке электродов или попадании металлических частиц между анодом и катодом, что ведёт ко повреждению пористого сепаратора. Также причиной внутреннего короткого замыкания может быть «прорастание» цепочек металлического лития (дендритов) через сепаратор. Такой эффект возникает, если ионы лития не успевают встроиться в кристалл анода при слишком быстрой зарядке или низкой температуре, а также если ёмкость активного материала катода превышает ёмкость анода, в результате чего на поверхности анода появляются микроскопические отложения, которые постепенно растут.


Итак, после того, как произошло короткое замыкание, аккумулятор начинает нагреваться. Когда температура достигает 70-90 °C, ион-проводящий защитный слой на аноде начинает разлагаться. А дальше литий, встроенный в анод, вступает в реакцию с электролитом, выделяя летучие углеводороды: этан, метан, этилен и т.д. Но, несмотря на наличие такой взрывоопасной смеси, возгорания не происходит, так как в системе пока нет кислорода.

Так как реакции с электролитом экзотермические, температура и давление внутри аккумулятора продолжают повышаться. Когда температура достигает 180-200 °C, материал катода, обычно представляющий из себя оксид переходных металлов со встроенным в кристалл литием, вступает в реакцию диспропорционирования и выделяет кислород. Вот тут-то и происходит самовозгорание и ещё более резкий скачок температуры. Параллельно идёт термическое разложение электролита (200-300 °C), также выделяющее тепло. Выглядит это так:


И, в конце концов, в реакцию с электролитом (если он ещё остался) вступает графит, а когда температура достигает 660 °C, плавится алюминиевый токоприёмник. Выше 900°C температура обычно не поднимается, так как разлагаться уже нечему.

Помимо внутреннего короткого замыкания существуют и другие причины самовозгорания: перегрев аккумулятора, неправильная зарядка/разрядка (превышение максимально допустимого напряжения, зарядка на высоких токах, слишком глубокая разрядка), и т.д. Но все эти причины приводят к одному результату: термическому разгону и разложению электролита при взаимодействии с электродами. Различаются только порядки вышеописанных реакций и их скорость.

Естественно, производители аккумуляторов предусмотрели системы защиты от самовозгорания, и чем больше и мощнее аккумулятор, тем больше степеней защиты он содержит. Одним из видов защиты от небольшого короткого замыкания является пористый сепаратор, который при локальном повышении температуры становится непроницаемым и препятствует, к примеру, дальнейшему росту дендритов внутри аккумулятора. Но иногда температура повышается слишком быстро, и сепаратор просто плавится, в результате чего анод соприкасается с катодом.

Также аккумуляторы оборудованы предохранителями и клапанами, которые при повышении давления и температуры внутри либо отключают электроды от цепи, либо способствуют выходу наружу скопившегося газа. В последнем случае, так как газы легковоспламеняющиеся, при контакте с кислородом снаружи возникает пламя. Пример действия защитных клапанов можно было наблюдать при аварии с участием автомобиля Тесла Model S, где аккумулятор был пробит крупным металлическим предметом. Так как в Тесле клапаны аккумуляторов были направлены вниз на асфальт и отдельные блоки были хорошо изолированы друг от друга, сгорела лишь передняя часть аккумулятора (как сказал Элон Маск, если бы тот же металлический предмет пробил бак с бензином, машины бы сгорела целиком).


Кстати, термическая изоляция отдельных блоков в крупном аккумуляторе очень важна. Если в вышеупомянутом примере аккумулятор Теслы не загорелся полностью из-за хорошей термоизоляции, то в случае аккумулятора на борту Боинга 787 самовозгорание произошло из-за того, что блоки были недостаточно изолированы друг от друга, что привело к перегреву всей системы.


Также литий-ионные аккумуляторы оснащены контроллерами, сенсорами, балансирами заряда, и т.д. Подробнее про системы безопасности аккумуляторов можно почитать .

Как видно из этого поста, самый опасный компонент аккумулятора- электролит, который разлагается на легковоспламеняющиеся компоненты при повышении температуры. На сегодняшний день учёные пытаются найти более стабильные альтернативы: ионные жидкости, полимерные электролиты, твёрдотельные керамические электролиты и т.д. Но это-отдельная тема…

В нашей жизни литиевые батареи уже прочно заняли свое место и во многих случаях играют ключевую роль. Конечно же, срок службы каждого аккумулятора ограничен, но может ли он работать дольше и более эффективно? Надеюсь, небольшой сборник полезных советов, предоставленный ниже, Вам обязательно пригодится.

Как литиевые батареи взрываются?

Стандартные условия использования аккумуляторов: температура окружающей среды до 60 градусов Цельсия, без каких-либо дополнительных термо- и/или механических воздействий. Эти идеальные условия обеспечат максимальный срок службы аккумулятора и оградят вас от неприятных сюрпризов.

В то же время, батарея не должна находиться в сжатом пространстве, возле источников огня или высокой температуры, в процессе использования, батарея не должна подвергаться физической деформации, прокалываться, или даже просверливаться. Потому что, даже один из этих моментов, может спровоцировать взрыв аккумулятора.

И еще! Не в коем случае не разбирайте аккумуляторы!

Внешний вид аккумуляторов

После продолжительного использования, литиевый аккумулятора начинает вырабатывать газ и сам аккумулятора начинает раздуваться. В более редких случаях, аккумулятор начинает течь. И если вдруг, Вы заметите подобные изменения в аккумуляторе, то следует немедленно прекратить использование устройства, а сам аккумулятор отсоединить от источника потребления. Конечно, при этом надо соблюдать осторожность, чтобы не закоротить контакты самого аккумулятора.

Все аккумуляторы в среднем рассчитаны на определенное количество разрядов и зарядов. Со временем использования, внутренняя структура аккумулятора разрушается, изменяется форма аккумулятора и емкость начинает снижаться. Я пишу это не для того, чтобы Вы начали меньше пользоваться приборами на литиевых батареях, я пишу это для того, чтобы Вы оценивали «возраст» и срок оставшейся жизни аккумулятора. Ниже находится фото плеера, в котором аккумулятор раздавил экран и деформировал корпус.

Кроме того, мы и сами у себя должны вырабатывать хорошие привычки, пользоваться только оригинальными зарядными устройствами. Каждая батарея, в зависимости от емкости, типа и используемого материала, имеет определенный параметры заряда, поэтому даже один и тот же производитель мобильных устройств может выпускать разные зарядные устройства. Пожалуйста, не забывайте об этом.

Как ухаживать за литиевыми батареями?

Как уже писалось выше, по мере использования, срок службы аккумуляторов сокращается. Так вот, если в процессе эксплуатации батареи, Вы замечаете, что при том же времени заряда аккумулятора, время работы устройства значительно сокращается, то скорее всего, срок жизни аккумулятора подходит к концу и Вам пора задуматься о его замене.

Раньше часто уделялось внимание тренировкам батарей, путем нескольких циклов полного разряда и заряда. Пора уже это забыть. Литиевые батареи не обладаю эффектом памяти, поэтому данные «процедуры» для них просто бесполезны.

Оптимальные условия для хранения аккумулятора: уровень заряда около 40%, в прохладном (0-10 градусов) месте. При этом вы можете не беспокоиться об аккумуляторах около полу года. Раз в пол года можно проверить уровень заряда, для поддержании его около отметки 40%.

Хотелось бы еще отметить и тот факт, что литиевые аккумуляторы подвержены естественному старению, даже, если они не используются. Примерно за 2 года, батарея теряет около трети своей емкости. Это говорит о том, что нет необходимости запасаться такими батареями в прок и, что при их покупки, необходимо обращать на дату изготовления.

Ядерная батарея или батареи будущего.

Технологии не стоят на месте, но мы до сих пор несколько раз в неделю, дома должны доставать зарядное устройство и подключать наш мобильный телефон и плеер на зарядку на ночь. Это у нас вошло в привычку и на рутинность этих действий мы уже не обращаем внимание…

А в тоже время, уже сейчас существуют ядерные источники питания, размеры которых соизмеримы с размерами монеты.  Подобные источники, способны вырабатывать энергию на протяжении около сотни лет без какого-либо вмешательства и каких-либо подзарядок, что заставляет задуматься о перспективе этого направления, не так ли?! Кроме того, не стоит пугаться названия, эти элементы абсолютно безвредны для жизни и здоровья живых существ.

Так что скоро, похоже, мы полностью забудем, что такое зарядное устройство, какие они бывают и как им пользоваться