Использование ооп. ООП - это что такое? Основные принципы объектно-ориентированного программирования

Почему объектно-ориентированному программированию отдается предпочтение в большинстве проектов? ООП предлагает эффективный способ борьбы с их сложностью. Вместо того чтобы рассматривать программу как последовательность исполняемых инструкций, оно представляет ее как группу объектов с определенными свойствами и производит с ними определенные действия. Это приводит к созданию более ясных, более надежных и легкосопровождаемых приложений.

Основные принципы сформировались потому, что в существовавших ранее подходах были обнаружены ограничения. Среди них - неограниченный доступ к данным и большое количество связей, которые накладывают ограничения на внесение изменений. Их осознание и причины важны для того, чтобы понять, что такое ООП в программировании и каковы его преимущества.

Процедурные языки

C, Pascal, FORTRAN и подобные языки являются процедурными. То есть каждый их оператор приказывает компьютеру что-то сделать: получить данные, сложить числа, разделить на шесть, отобразить результат. Приложение на процедурном языке представляет собой список инструкций. Если он небольшой, никакого другого организационного принципа (часто называемого парадигмой) не требуется. Программист создает список инструкций, и компьютер выполняет их.

Разделение на функции

Когда приложения становятся больше, список получается громоздким. Немногие могут понять более нескольких сотен инструкций, пока они не будут сгруппированы. По этой причине функция стала способом сделать приложения более понятными для своих создателей. В некоторых языках та же концепция может носить название подпрограммы или процедуры.

Приложение разделено на функции, каждая из которых имеет четко определенную цель и интерфейс.

Идея разделения на процедуры может быть расширена их группированием в больший объект, называемый модулем, но принцип аналогичен: группирование компонентов, которые выполняют списки инструкций.

Разделение на функции и модули - один из краеугольных камней структурного программирования, которое в течение нескольких десятилетий до появления ООП являлось довлеющей парадигмой.

Проблемы структурного программирования

Поскольку приложения становились все более крупными, структурное программирование начало испытывать трудности. Проекты становились слишком сложными. Графики сдвигались. Задействовалось большее число программистов. Сложность росла. Затраты взлетали, график сдвигался дальше, и наступал крах.

Анализ причин этих неудач показал недостатки процедурной парадигмы. Независимо от того, насколько хорошо реализован структурированный подход к программированию, крупные приложения становятся чрезмерно сложными.

Каковы причины этих проблем, связанных с процедурными языками? Во-первых, функции имеют неограниченный доступ к глобальным данным. Во-вторых, не связанные между собой процедуры и значения плохо моделируют реальный мир.

Если рассматривать эти проблемы в контексте программы учета запасов, то одним из важнейших глобальных элементов данных является совокупность учетных единиц. Разные функции могут обращаться к ним для ввода нового значения, его отображения, изменения и т. д.

Неограниченный доступ

В программе, написанной, например, на C, есть два вида данных. Локальные скрыты внутри функции и другими процедурами не используются.

Когда две и более функций должны получить доступ к одним и тем же данным, то последние должны быть глобальными. Такими, например, являются сведения об учитываемых предметах. Глобальные данные могут быть доступны любой процедуре.

В большой программе есть множество функций и много глобальных элементов. Проблема процедурной парадигмы состоит в том, что это приводит к еще большему числу потенциальных связей между ними.

Такое большое количество соединений вызывает несколько затруднений. Во-первых, это осложняет понимание структуры программы. Во-вторых, затрудняет внесение изменений. Изменение в глобальном элементе данных может потребовать корректирования всех функций, имеющих к нему доступ.

Например, в программе учета кто-то решит, что код учитываемого предмета должен состоять не из 5 цифр, а из 12. Это потребует изменить с short на long. Теперь связанные с кодом функции должны быть изменены для работы с новым форматом.

Когда элементы изменяются в большом приложении, трудно сказать, какие процедуры имеют к ним доступ. Но даже если это выяснить, их изменение может привести к неправильной работе с другими глобальными данными. Все связано со всем остальным, поэтому изменение в одном месте аукнется в другом.

Моделирование реального мира

Второй и более важной проблемой процедурной парадигмы является то, что ее расположение отдельных данных и функций плохо моделирует вещи в реальном мире. Здесь мы имеем дело с такими объектами, как люди и автомобили. Они не похожи ни на данные, ни на функции. Сложные реальные объекты обладают атрибутами и поведением.

Атрибуты

Примерами атрибутов (иногда называемых характеристиками) для людей являются цвет глаз и название должности, для автомобилей - мощность и количество дверей. Как оказалось, атрибуты в реальном мире эквивалентны данным в программе. Они имеют конкретные значения, такие как синий (цвет глаз) или четыре (количество дверей).

Поведение

Поведение - это то, что объекты реального мира производят в ответ на какое-то воздействие. Если попросить начальство о повышении зарплаты, ответ будет "да" или "нет". Если нажать на тормоз, то автомобиль остановится. Произнесение и остановка являются примерами поведения. Поведение подобно процедуре: его вызывают, чтобы сделать что-то, и оно делает это. Таким образом, данные и функции сами по себе не моделируют объекты реального мира эффективно.

Решение проблемы

Объект в ООП представляется как совокупность данных и функций. Только процедуры, которые называются функциями-членами в C ++, позволяют получить его значения. Данные скрыты и защищены от изменения. Значения и функции инкапсулированы в одно целое. Инкапсуляция и упрятывание - основные термины в описании ОО-языков.

Если требуется изменить данные, точно известно, какие функции взаимодействуют с ними. Никакие другие процедуры не могут получить к ним доступ. Это упрощает написание, отладку и поддержание программы.

Приложение, как правило, состоит из нескольких объектов, которые взаимодействуют друг с другом, вызывая функции-члены.

Сегодня наиболее широко используемый программирование) - C++ (плюс-плюс). В Java отсутствуют некоторые функции, такие как указатели, шаблоны и множественное наследование, что делает его менее мощным и универсальным, чем C++. C# еще не достиг популярности C++.

Следует отметить, что так называемые функции-члены в C++ называются методами в некоторых других ОО-языках, таких как Smalltalk. Элементы данных называются атрибутами. Вызов метода объекта является посылкой ему сообщения.

Аналогия

Можно представить объекты отделами компании. В большинстве организаций сотрудники не работают один день с кадрами, на следующий начисляя зарплату, а затем неделю занимаясь розничной торговлей. У каждого отдела есть свой персонал с четко возложенными на него обязанностями. Есть и собственные данные: показатели заработной платы, продаж, учет сотрудников и т. д. Люди в отделах работают со своей информацией. Разделение компании, таким образом, облегчает контроль за ее деятельностью и поддерживает целостность данных. Бухгалтерия отвечает за Если необходимо знать общую сумму заработной платы, выплачиваемой в южном филиале в июле, не нужно рыться в архиве. Достаточно направить записку ответственному лицу, подождать, пока этот человек получит доступ к данным и отправит ответ с требуемой информацией. Это гарантирует соответствие регламенту и отсутствие постороннего вмешательства. Таким же образом объект в ООП обеспечивает организацию приложения.

Следует помнить, что ориентация на объекты не касается подробностей работы программы. Большинство инструкций C++ соответствует операторам процедурных языков, таких как С. Действительно, функции-члены в C++ очень похожи на функции в С. Только более широкий контекст позволит установить, является ли инструкция процедурной или объектно-ориентированной.

Объект в ООП: определение

При рассмотрении задачи программирования на ОО-языке вместо вопросов о ее разделении на отдельные функции возникает проблема разделения на объекты. ООП-мышление намного облегчает разработку приложений. Это происходит в результате сходства программных и реальных объектов.

Какие вещи становятся объектами в ООП? Ниже представлены типичные категории.

Физический объект в ООП - это:

  • транспорт в моделях движения потока;
  • электрические элементы в программах схемотехники;
  • страны в модели экономики;
  • самолет в системе управления воздушным движением.

Элементы среды компьютера пользователя:

  • меню;
  • окна;
  • графика (линия, прямоугольник, круг);
  • клавиатура, мышь, принтер, дисковые накопители.
  • работники;
  • студенты;
  • клиенты;
  • продавцы.
  • книга учета;
  • личное дело;
  • словарь;
  • таблица широт и долгот населенных пунктов.

Связь объектов реального мира и ООП стало результатом сочетания функций и данных: они произвели переворот в программировании. Такого близкого соответствия в процедурных языках нет.

Класс

Объекты в ООП - это члены классов. Что это значит? Языки программирования имеют встроенные типы данных. Тип int, т. е. целое число, предопределен в C++. Можно объявлять сколько угодно переменных int.

Аналогично определяется множество объектов одного класса. Он определяет функции и данные, включаемые в его объекты, не создавая их, так же как int не создает переменные.

Класс в ООП - это описание ряда похожих объектов. Принц, Стинг и Мадонна являются певцами. Нет ни одного человека с таким именем, но люди могут так называться, если они обладают соответствующими характеристиками. Объект ООП - это экземпляр класса.

Наследование

В жизни классы разделены на подклассы. Например, животные делятся на земноводных, млекопитающих, птиц, насекомых и т. д.

Принцип такого рода деления состоит в том, что каждый подкласс имеет общие характеристики с классом, от которого происходит. Все автомобили имеют колеса и двигатель. Это определяющие характеристики транспортных средств. В дополнение к общим характеристикам каждый подкласс обладает своими особенностями. У автобусов много посадочных мест, а грузовики имеют пространство для перевозки тяжелых грузов.

Аналогично базовый класс может стать родителем нескольких производных подклассов, которые могут быть определены так, что они будут разделять его характеристики с добавлением собственных. Наследование подобно функции, упрощающей процедурную программу. Если несколько частей кода делают почти то же, можно извлечь общие элементы и поместить их в одну процедуру. Три участка приложения могут вызвать функцию, чтобы выполнить общие действия, но они могут производить и свои собственные операции. Подобно этому базовый класс содержит данные, общие для группы производных. Подобно функциям наследование сокращает ОО-программу и проясняет взаимосвязь ее элементов.

Повторное использование

После того как класс создан и отлажен, он может быть передан другим программистам для повторного использования в собственных приложениях. Это похоже на библиотеку функций, которая может входить в разные приложения.

В ООП наследование является расширением идеи многократного использования. Из существующего класса, не изменяя его, можно образовать новый с добавлением других функций. Легкость повторного использования существующего ПО - важное преимущество ООП. Считается, что это обеспечивает рост доходности от первоначальных инвестиций.

Создание новых типов данных

Объекты удобны для создания новых типов данных. Предположим, в программе используются двумерные значения (например, координаты или широта и долгота), и есть желание выразить действия с ними арифметическими операциями:

position1 = position + origin,

где и origin - пары независимых численных величин. Создание класса, включающего в себя эти два значения, и объявление переменных его объектами создает новый тип данных.

Полиморфизм, перегрузка

Операторы = (равно) и + (плюс), используемые в позиционной арифметике выше, не действуют так же, как с встроенными типами, такими как int. Объекты position и др. не предопределены, а заданы программным путем. Каким образом эти операторы знают, как с ними обращаться? Ответ заключается в том, что для них можно задать новые модели поведения. Эти операции будут функциями-членами класса Position.

Использование операторов или процедур в зависимости от того, с чем они работают, называется полиморфизмом. Когда существующий оператор, такой как + или =, получает возможность работать с новым типом данных, говорят, что он перегружен. Перегрузка в ООП - это вид полиморфизма. Она является его важной чертой.

Книга об ООП «Объектно-ориентированное программирование для чайников» позволит всем желающим ознакомиться с данной темой подробнее.

По мере совершенствования вычислительной техники компьютеры стали использоваться для решения все более и более сложных задач. Оказалось, что для решения сложных задач важна не только повышенная вычислительная мощность компьютеров, но и эффективность написания сложных программ. Объектно-ориентированное программирование (ООП) появилось именно как эффективный способ преодоления трудностей, возникающих при создании сложных программ.

Наиболее значимой частью ООП является особый подход к решению сложных задач программирования, называемый объектно-ориентированным анализом , а объектно-ориентированные языки программирования - просто удобные инструменты для реализации этого подхода.

История

Основатели ООП - выдающиеся норвежские ученые Кристен Нигаард (Cristen Nygaard) и Оле-Йохан Даль (Ole-Johan Dahl). Работая над моделированием судовождения, Нигаард понял, что существующие программные средства малоэффективны в создании столь сложных программ, и тогда Нигаард начал разрабатывать концепции нового программирования, позволяющего преодолеть барьеры сложности, и которое впоследствии было названо объектно-ориентированным (сам термин был придуман Аланом Кеем, автором языка Java). Вместе с Оле-Йоханом Далем Нигаард разработал основные положения ООП и практические механизмы их реализации, которые затем были воплощены в первом ООЯ Симула (Simula). Заслуги этих ученых были по достоинству оценены мировым научным сообществом, и в 2001 году Нигаард и Даль стали лауреатами премии имени Алана Тьюринга - своеобразного аналога Нобелевской премии в области computer science.

Язык Симула пользовался известностью в академических кругах, однако по ряду причин не завоевал популярности среди разработчиков коммерческого ПО. Тем не менее основные идеи и возможности ООП были очень привлекательны для программистов. Впоследствии были созданы другие ООЯ: SmallTalk (1980), C++ (1985), Eiffel (1986), Object Pascal (1986) и Delphi (1995), Oberon-2 (1991), Java (1991), Visual Basic (1991) и многие другие. Некоторые из этих языков стали промышленными стандартами в программировании.

Особенности ООП

Основная идея ООП заключается в том, что следует создавать программные структуры, поведение и взаимодействие которых имитирует поведение и взаимодействие объектов реального мира (т.е. в программе как бы создаются виртуальные аналоги реальных сущностей). Объектно-ориентированные языки программирования должны предоставлять средства для удобного и быстрого воплощения этого подхода.

В обыденной жизни люди используют (пусть даже неосознанно) различные приемы “экономии мышления”, позволяющие осмысливать и выражать сложные явления в простых понятиях. Типичными приемами “экономии мышления” являются:

· абстрагирование (отбрасывание несущественных деталей);

· обобщение (выделение общих существенных признаков у разных явлений или предметов);

· классификация (осознание связи между явлениями и степени их схожести).

Эти простые приемы помогают человеку справиться со сложностью рассматриваемых явлений. И объектно-ориентированные языки программирования также должны предоставлять подобные средства для “борьбы со сложностью” программ. Для реализации объектно-ориентированного подхода в языки программирования вводятся новые понятия:

· объекты - особые программные структуры, объединяющие данные и алгоритмы их обработки;

· инкапсуляция - сокрытие подробностей функционирования объектов;

· наследование - “сокращенный” способ создания новых классов;

· полиморфизм - возможность применения нескольких реализаций одной функции.

Объекты и классы

Объекты - особые программные единицы, состоящие из данных и алгоритмов для обработки именно этих данных . Данные, входящие в состав объекта, называются полями (атрибутами, свойствами, членами). Алгоритмы, входящие в состав объекта, называются методами (сервисами, операциями, функциями-членами). К сожалению, единой устоявшейся терминологии в ООП нет, и в разных языках используются различные термины для обозначения одних и тех же понятий.

Классы - это объектные типы данных. Подобно тому, как целые числа принадлежат какому-нибудь целочисленному типу (например, integer или byte), объекты также принадлежат какому-либо объектному типу - классу. Все объекты одного класса имеют одинаковый набор полей и одинаковый набор методов.

В некоторых языках (C++, Java) объекты называются экземплярами класса (instances).

Полезность использования классов и объектов заключается в том, что проверка логического (смыслового) соответствия между данными и функциями для обработки данных становится тривиальной задачей и может быть в основном переложена на компилятор (компьютер) - теперь он сам может определить неверное использование данных.

Инкапсуляция

Инкапсуляция (дословно - “сокрытие”) - контролируемое сокрытие информации о внутренней структуре класса. В классе могут быть поля и методы, используемые объектами исключительно для обеспечения своей работы (например, буфер в динамической памяти, файл с рабочими данными, методы для работы с этим файлом и т.п.). Изменять такие поля или вызывать методы извне объекта опасно - это может нарушить его рабочее состояние. Для обеспечения безопасности объектов подобные поля и методы можно скрыть - запретить обращение к ним извне.

С позиций “борьбы со сложностью” инкапсуляция позволяет переложить часть контроля за правильностью работы с объектами на компилятор (компьютер).

Различные ООЯ предлагают разные возможности по инкапсуляции полей и методов (от полного отсутствия и до автоматического сокрытия всех полей). В промышленных ООЯ, таких, как C++, Java, Delphi, Eiffel и т.д., предусмотрены три уровня инкапсуляции полей и методов:

· public - на обращение к публичным полям и методам объектов нет никаких ограничений;

· protected - прямое обращение к защищенным полям и методам возможно только из методов данного класса и методов дочерних классов;

· private - прямое обращение к приватным полям и методам возможно исключительно из методов данного класса.

Наследование

Наследование - создание новых классов путем дописывания только отличий от уже существующих классов, опуская описания совпадающих элементов. При наследовании новый класс называется классом-потомком (производным, дочерним, подклассом), а исходный класс называется классом-предком (базовым, родительским, суперклассом).

Наследование сокращает размер программы за счет исключения повторных описаний. Все поля и методы, объявленные в классе-предке, автоматически переносятся в класс-потомок, и их принято называть унаследованными (inherited).

При необходимости любой родительский метод можно переопределить - т.е. назначить выполнение другого алгоритма в случае вызова одноименного метода класса-потомка.

Некоторые ООЯ поддерживают множественное наследование , при котором производный класс наследует все свойства и методы одновременно от нескольких классов. К сожалению, множественное наследование таит в себе немало логических конфликтных ситуаций, а его поддержка усложняет язык программирования, и особенно - компилятор. По этой причине во многих ООЯ множественное наследование просто запрещено, но его можно сымитировать.

Совокупность всех классов-предков и классов-потомков называется иерархией классов .

Наследование классов - центральное понятие ООП, на нем прямо или косвенно базируются все остальные понятия и механизмы. Абсолютному большинству механизмов ООП, чтобы проявить свои преимущества, требуется построение иерархий классов.

Полиморфизм

Полиморфизм (дословно - “многообразие форм”) - возможность использовать одно имя для нескольких методов (или функций), имеющих сходное назначение. Другая интерпретация - один метод (функция) может иметь несколько вариантов реализации; такой метод (функция) называется полиморфным . Подобно другим механизмам ООП, полиморфизм является средством упрощения разработки сложных программ. Фактически полиморфизм отделяет понятие, что надо сделать, от того, как это надо делать.

Если провести аналогию с реальной жизнью, то полиморфизм соответствует обобщенным действиям. Например, глагол “музицировать” означает “играть на музыкальном инструменте”. Но на разных музыкальных инструментах играют по-разному. Термин один, а вариантов действия - много. Значит, “музицировать” - полиморфное действие . В ООП действию “музицировать” соответствовал бы полиморфный метод , имеющий свои реализации для каждого класса музыкальных инструментов.

В ООП есть два вида полиморфных методов - перегруженные и виртуальные .

Перегруженные методы предназначены для выполнения с данными разных типов. Они имеют одинаковые имена, но разные списки аргументов и/или тип возвращаемого значения.

Виртуальные методы предназначены для выполнения одинаковых по смыслу операций в объектах родственных, но не совпадающих классов. Виртуальные методы имеют одинаковые имена и прототипы. Их главная особенность - они всегда точно соответствуют реальному классу объекта.

Типичный пример перегруженных функций - функция SQR в Паскале. Она вычисляет квадрат числа, причем для целых аргументов результат будет также целым, а для вещественных - вещественным.

Достоинства виртуальных методов проявляются только при использовании иерархии классов. Типичная схема использования виртуальных методов такова:

· В классе-предке иерархии объявляется полиморфный метод, который описывает некое полезное действие. При этом либо он использует виртуальный метод, либо сам является виртуальным.

· В классах-потомках соответствующий виртуальный метод переопределяется - для каждого класса-потомка это полезное действие выполняется по-своему.

· При вызове для объекта, принадлежащего классу-потомку, полиморфного метода на деле используется виртуальный метод класса-потомка (а не класса-предка).

Яркий пример подобного использования виртуальных методов - система графического оконного интерфейса Delphi или Visual Basic: каждый видимый элемент графического интерфейса - кнопка, ползунок, окно и т.п. - должен быть потомком класса TControl. В классе TControl вводятся общие полиморфные методы отрисовки элементов графического интерфейса, а любой его потомок может нарисовать себя на экране своим собственным способом.

Объектно-ориентированное программирование явно не упоминается в Стандарте 2004 года, хотя в Обязательном минимуме содержания образования по информатике для учащихся профильных заведений (Уровень Б) такая тема присутствовала: Объектно-ориентированное программирование: объект, свойства объекта, операции над объектом . Там же упоминалась и объектно-ориентированная технология программирования.

Тем не менее ООП не просто вошло в практику преподавания информатики (программирования) многих школ, но и присутствует на страницах школьных учебников (Угринович Н.Д. Информатика и информационные технологии. Учебник для 10–11-х классов, 2005. М.: БИНОМ. Лаборатория Знаний). Кроме того, в пропедевтическом курсе информатики для начальной школы (рабочие тетради авторского коллектива под руководством А.Горячева. 1–4-е классы) также вводятся понятия объекта и его свойств .

Технология (парадигма) ООП требует не столько освоения современной техники программирования, сколько умения разрабатывать объектную модель решаемой задачи. Для этого требуется хорошо знать базовые принципы ООП и программирования вообще, однако знание какого-либо ООЯ не является обязательным - об этом неоднократно писали основоположники и теоретики ООП. Так, Гради Буч в своей книге “Объектно-ориентированное проектирование и анализ” высказывает следующую максиму: “Писать программы в объектно-ориентированном стиле можно в любом (не объектно-ориентированном) языке программирования”. Для построения алгоритма по технологии ООП требуется сформировать список объектов, с которыми работает алгоритм, продумать свойства каждого объекта и реализовать алгоритм как взаимодействие описанных объектов.

Как уже было сказано в статье, такой подход упрощает решение сложных задач, но в рамках школы (с учетом ограниченного числа часов) трудно придумать содержательные учебные задачи, которые бы не надуманно требовали использования технологии ООП в полной мере.

Фактически же ООП в школе рассматривается лишь как неотъемлемая часть визуального и компонентного программирования в современных профессиональных системах программирования, а в качестве объектов используются готовые объектные библиотеки различного уровня - это и библиотеки для построения графического интерфейса Windows-приложений, и многоцелевые универсальные библиотеки типов данных (например, STL в С++). Для примитивного использования этих библиотек достаточно знать и уметь применять несколько простейших правил синтаксиса языка программирования. Однако такие “знания” никоим образом не приближают учащихся ни к профессиональному овладению языком программирования, ни даже к пониманию ООП. Но, видимо, ничего страшного в этом нет. Школьная информатика и в профильной школе не ставит своей целью подготовку профессиональных программистов. Преподавание ООП - это специальная тема, даже на соответствующих специальностях вузов ее часто не изучают в достаточном объеме.

Не отрицая полностью предложение некоторых преподавателей информатики поставить объектно-ориентированный подход во главу угла изучения программирования, в том числе в школе, отметим, что ООП невозможно без таких базовых понятий, как программа, исполнитель, переменная, условие, цикл и т.д. Концепция ООП также включает в себя классическое процедурное программирование (см. “Подпрограммы ”), как механика Эйнштейна - механику Ньютона: достаточно представить себе процедурную программу как единственный объект с опущенным для простоты именем. Поэтому в первую очередь задача курса программирования в школе - научить базовым вещам. И лишь при возможности работы с современными визуальными средами программирования (Delphi, Visual Basic, Visual C++
и т.п.) познакомить с понятием объектов и их использованием в основном с помощью методики обучения программированию “по образцу”.

Концепция объектно-ориентированного программирования (ООП) появилась более сорока лет назад, как развитие идей процедурного программирования. Идеология процедурного программирования, на мой взгляд, ничего особенного собой не представляет: все программы представлены набором процедур и функций, в то время как сами процедуры и функции – это последовательности операторов, выполняя которые модифицирует значения переменных в памяти. Основная программа в процедурном программировании также является процедурой (функцией), в теле которой могут быть вызовы других процедур и функций – подпрограмм. Суть процедурного программирования проста: данные отдельно, поведение отдельно. То (какие конструкции в него входят), я постарался собрать в отдельном разделе. Разделение кода на подпрограммы, во-первых, позволяет , а во-вторых, .

Идеология объектно-ориентированного программирования, как следует из самого названия, строится вокруг понятия объект. Объект объединяет в себе и данные и поведение. Объект – это любая сущность, с которой имеет дело программа, а именно: объекты предметной области, моделируемые программой; ресурсы операционной системы; сетевые протоколы и многое другое. По сути, объект – это та же , но дополненная процедурами и функциями, управляющими элементами этой структуры. К примеру, в процедурном языке программирования отдельно была бы создана переменная для хранения имени файла и отдельно – для хранения его дескриптора (уникальный идентификатор ресурса в операционной системе), а также ряд процедур работы с файлом: открыть файл, прочитать данные из файла и закрыть файл. Все бы эти процедуры, помимо обычных параметров и переменных для хранения результата, обязаны были бы принимать тот самый дескриптор, чтобы понять, о каком именно файле идет речь. В объектно-ориентированном языке для этих же целей был бы описан объект-файл, который также бы хранил внутри себя имя и дескриптор и предоставлял бы пользователю процедуры для открытия, чтения и закрытия себя самого (файла, ассоциированного с конкретным объектом). Разница была бы в том, что дескриптор был бы скрыт от остальной части программы, создавался бы в коде процедуры открытия файла и использовался бы неявно только самим объектом. Таким образом, пользователю объекта (программному коду внешней по отношению к объекту программы) не нужно было бы передавать дескриптор каждый раз в параметрах процедур. Объект – это комплект данных и методов работы с этими данными, часть из которых может быть скрыта от окружающего его мира, к которой и относятся детали реализации. Более подробно о терминологии объектно-ориентированного программирования будет рассказано далее.

Объектом в объектно-ориентированном языке программирования является практически все, за исключением операторов: и являются объектами, и описание ошибки является объектом и, наконец, основная программа также является объектом. Осталось понять, что такое объект с точки зрения самой программы, как он создается и используется. Вторым основополагающим понятием ООП является класс. Класс – это тот самый новый в сравнении с процедурным программированием тип данных, экземпляры которого и называются объектами. Класс, как уже было сказано, похож на составной тип данных или структуру, но дополненный процедурами и функциями (методами) для работы со своими данными. Теперь самое время описать основные термины объектно-ориентированного программирования.

Терминология объектно-ориентированного программирования

Перед тем, как перейти к описанию преимуществ, которые дает ООП разработчикам программного обеспечения в процессе , и программных продуктов необходимо познакомиться с наиболее часто встречающимися терминами в этом области.

Класс – тип данных, описывающий структуру и поведение объектов.

Объект – экземпляр класса.

Поле – элемент данных класса: переменная элементарного типа, структура или другой класс, являющийся частью класса.

Состояние объекта – набор текущих значений полей объекта.

Метод – процедура или функция, выполняющаяся в контексте объекта, для которого она вызывается. Методы могут изменять состояние текущего объекта или состояния объектов, передаваемых им в качества параметров.

Свойство – специальный вид методов, предназначенный для модификации отдельных полей объекта. Имена свойств обычно совпадают с именами соответствующих полей. Внешне работа со свойствами выглядит точно так же, как работа с полями структуры или класса, но на самом деле перед тем, как вернуть или присвоить новое значение полю может быть выполнен программный код, осуществляющий разного рода проверки, к примеру, проверку на допустимость нового значения.

Член класса – поля, методы и свойства класса.

Модификатор доступа – дополнительная характеристика членов класса, определяющая, имеется ли к ним доступ из внешней программы, или же они используются исключительно в границах класса и скрыты от окружающего мира. Модификаторы доступа разделяют все элементы класса на детали реализации и открытый или частично открытый интерфейс.

Конструктор – специальный метод, выполняемый сразу же после создания экземпляра класса. Конструктор инициализирует поля объекта – приводит объект в начальное состояние. Конструкторы могут быть как с параметрами, так и без. Конструктор без параметров называют конструктором по умолчанию, который может быть только один. Имя метода конструктора, чаще всего, совпадает с именем самого класса.

Деструктор – специальный метод, вызываемый средой исполнения программы в момент, когда объект удаляется из оперативной памяти. Деструктор используется в тех случаях, когда в состав класса входят ресурсы, требующие явного освобождения (файлы, соединения с базами данных, сетевые соединения и т.п.)

Интерфейс – набор методов и свойств объекта, находящихся в открытом доступе и призванных решать определенный круг задач, к примеру, интерфейс формирования графического представления объекта на экране или интерфейс сохранения состояния объекта в файле или базе данных.

Статический член – любой элемент класса, который может быть использован без создания соответствующего объекта. К примеру, если метод класса не использует ни одного поля, а работает исключительно с переданными ему параметрами, то ничто не мешает его использовать в контексте всего класса, не создавая отдельных его экземпляров. Константы в контексте класса обычно всегда являются статическими его членами.

На этом с терминологией ООП далеко еще не все, но остальные понятия, связанные с этой парадигмой будут рассмотрены в следующем разделе.

Преимущества объектно-ориентированного программирования

Теперь поговорим о свойствах, которые приобретает программа при использовании объектно-ориентированного подхода к ее проектированию и кодированию. Как мне кажется, большинство этих свойств являются преимуществами ООП, но есть на этот счет и другие мнения…

    Инкапсуляция обозначает сокрытие деталей реализации классов средствами награждения отдельных его членов соответствующими модификаторами доступа. Таким образом, вся функциональность объекта, нацеленная на взаимодействие с другими объектами программы группируется в открытый интерфейс, а детали тщательно скрываются внутри, что избавляет основной код бизнес-логики от ненужных ему вещей. Инкапсуляция повышает надежность работы программного кода, поскольку гарантирует, что определенные данные не могут быть изменены за пределами содержащего их класса.

    Наследование . Краеугольный камень ООП. В объектно-ориентированном программировании есть возможность наследовать структуру и поведение класса от другого класса. Класс, от которого наследуют, называется базовым или суперклассом, а класс, который получается вследствие наследования – производным или просто потомком. Любой класс может выступать как в роли суперкласса, так и в роли потомка. Связи наследования классов образуют иерархию классов. Множественным наследованием называют определение производного класса сразу от нескольких суперклассов. Не все объектно-ориентированные языки программирования поддерживают множественное наследование. Наследование – это эффективный способ выделения многократно используемых фрагментов кода, но у него есть и минусы, о которых будет рассказано далее.

    Абстрагирование . Возможность объединять классы в отдельные группы, выделяя общие, значимые для них всех характеристики (общие поля и общее поведение). Собственно, абстрагирование и есть следствие наследования: базовые классы не всегда имеют свою проекцию на объекты реального мира, а создаются исключительно с целью выделить общие черты целой группы объектов. К примеру, объект мебель – это базовое понятие для стола, стула и дивана, всех их объединяет то, что это движимое имущество, часть интерьера помещений, и они могут быть выполнены для дома или офиса, а также относиться к “эконом” или “премиум” классу. В ООП есть для этого отдельное понятие абстрактный класс – класс, объекты которого создавать запрещено, но можно использовать в качестве базового класса. Наследование и абстрагирование позволяют описывать структуры данных программы и связи между ними точно так же, как выглядят соответствующие им объекты в рассматриваемой .

    Пример диаграммы классов, построенной путем абстрагирования, в ходе анализа видов существующих транспортных средств приведен на следующем рисунке. На верхних уровнях иерархии наследования находятся абстрактные классы, объединяющие транспортные средства по наиболее значимым характеристикам.


    Диаграмма классов или иерархия наследования "Транспортные средства". Белые квадраты обозначают абстрактные классы.

    Полиморфизм . Еще одно свойство, которое является следствием наследования. Дело в том, что объектно-ориентированные языки программирования позволяют работать с набором объектов из одной иерархии точно так же, как если бы все они были объектами их базового класса. Если вернуться к примеру про мебель, то можно предположить, что в контексте создания информационной системы для мебельного магазина в базовый класс для всех видов мебели разумно добавить общий для всех метод “показать характеристики”. При распечатке характеристик всех видов товара программа бы без разбору для всех объектов вызывала бы этот метод, а каждый конкретный объект уже сам бы решал, какую информацию ему предоставлять. Как это реализуется: Во-первых, в базовом классе определяют общий для всех метод с общим для всех поведением. В случае с нашим примером это будет метод, печатающий общие для любых типов мебели параметры. Во-вторых, в каждом производном классе, где это необходимо, переопределяют базовый метод (добавляют метод с тем же именем), где расширяют базовое поведение своим, например, выводят характеристики, свойственные только конкретному виду мебельной продукции. Метод в базовом классе иногда вообще не обязан содержать какой-либо код, а необходим только для того, чтобы определить имя и набор параметров – сигнатуру метода. Такие методы называют абстрактными методами, а классы, их содержащие, автоматически становятся абстрактными классами. Итак, полиморфизм – это возможность единообразного общения с объектами разных классов через определенный интерфейс. Идеология полиморфизма гласит, что для общения с объектом вам не нужно знать его тип, а нужно знать, какой интерфейс он поддерживает.

    Интерфейс . В некоторых языках программирования (C#, Java) понятие интерфейса выделено явно - это не только открытые методы и свойства самого класса. Такие языки, как правило, не поддерживают множественного наследования и компенсируют это тем, что любой объект может иметь один базовый объект и реализовывать любое количество интерфейсов. Интерфейс в их интерпретации – это подобие абстрактного класса, содержащего только описание (сигнатуру) открытых методов и свойств. Реализация интерфейса ложится на плечи каждого класса, который собирается его поддерживать. Один и тот же интерфейс могут реализовывать классы абсолютно разных иерархий, что расширяет возможности полиморфизма. К примеру, интерфейс “сохранение/восстановление информации в базе данных” могли бы реализовывать как классы иерархии “мебель”, так и классы, связанные с оформлением заказов на изготовление мебели, а при нажатии на кнопку “сохранить” программа бы прошлась по всем объектами, запросила бы у них этот интерфейс и вызвала бы соответствующий метод.

Объектно-ориентированное программирование постоянно развивается, порождая новые парадигмы, такие как аспектно-ориентированное, субъектно-ориентированное и даже агентно-ориентиванное программирование. Нужно отметит, что лавры ООП не дают покоя остальным теоретикам, и они спешат предложить свои варианты его совершенствования и расширения. Про я написал отдельную заметку, а сейчас хочу пару слов сказать про прототипное программирование, которое реализует язык на стороне клиента JavaScript. Прототипное программирование исключает понятие класса, заменяя его прототипом – образцом объекта. Таким образом, в прототипно-ориентированном языке нет понятия типа объекта, а есть понятие образец или прототип. Прототип – это экземпляр объекта, по которому создаются другие экземпляры, копируя (клонируя) его члены. В JavaScript вы не описываете поля и методы класса, а создаете сначала пустой объект, а потом добавляете ему нужные поля и методы (в JavaScript метод можно определить и добавить к объекту динамически). Точно также создаются и прототипы, на которые потом ссылаются другие объекты, как на свой прообраз. Если у объекта не находится какого-то метода или поля, которое указано в месте вызовы, то оно ищется среди членов его прототипа. То, я также отдельно описал.

Некоторые элементы современного объектно-ориентированного программирования

Время не стоит на месте, да и времени с момента появления ООП уже прошло довольно много, поэтому не стоит удивляться, что сегодня словарь по объектно-ориентированному программированию серьезно разросся. Итак, вот некоторые новые термины и понятия, связанные с ООП.

    События . Специальный вид объектов, создаваемый для оповещения одних объектов о событиях, происходящих с другими объектами. В разных языках программирования механизм событий реализуется по-разному: где-то с помощью специальных синтаксических конструкции, а где-то силами базовых средств ООП.

    Универсальный тип . Концепция универсальных типов не связана непосредственно с концепцией ООП, но она является причиной появление таких элементов, как универсальный класс, универсальный метод, универсальное событие и т.д. Универсальный тип – это тип, параметризованный другим типом (набором типов). Кем является этот тип-параметр в контексте проектирования универсального типа неизвестно, хотя есть возможность ограничить значения типов-параметров, заставив их быть производными от конкретного класса или реализовывать определенные интерфейсы. В качестве примера можно привести универсальный класс сортировки последовательности элементов, где тип элемента в последовательности заранее неизвестен. При проектировании такого класса важно указать, что тип-параметр должен поддерживать операцию сравнения. При создании объектов универсальных типов параметр указывается явно, например целочисленный или строковый тип, а сам объект начинает себя вести так, как если бы это был экземпляр класса, созданный специально для сортировки целых чисел или строк.

    Исключения . Еще один специальный вид объектов, поддерживаемый встроенным в конкретный язык программирования механизмом обработки ошибок и исключительных ситуаций. Исключения, помимо кода ошибки, содержат ее описание, возможные причины возникновения и стек вызовов методов, имевший место до момента возникновения исключения в программе.

Недостатки объектно-ориентированного программирования

Про то, что популярность объектно-ориентированного подхода к огромна я уже сказал. Про то, что тех, кто стремится расширить эту парадигму довольно много, я тоже уже отметил. Но есть еще один способ выделиться среди огромного сообщества специалистов в информационных технологиях – это заявить, что ООП себя не оправдало, что это не панацея, а, скорее, плацебо. Есть среди этих людей действительно специалисты очень высокого класса, такие как , Александр Степанов, Эдсгер Дейкстра и другие, и их мнение заслуживает внимания, но есть и те, про которых говорят, что “плохому танцору всегда что-то мешает”. Вот они, наиболее очевидные недостатки ООП, на которые указывают специалисты:

    ООП порождает огромные иерархии классов, что приводит к тому, что функциональность расползается или, как говорят, размывается по базовым и производным членам класса, и отследить логику работы того или иного метода становится сложно.

    В некоторых языках все данные являются объектами, в том числе и элементарные типы, а это не может не приводить к дополнительным расходам памяти и процессорного времени.

    Также, на скорости выполнения программ может неблагоприятно сказаться реализация полиморфизма, которая основана на механизмах позднего связывания вызова метода с конкретной его реализацией в одном из производных классов.

Объе́ктно-ориенти́рованное программи́рование (ООП) - методология программирования , основанная на представлении программы в виде совокупности объектов , каждый из которых является экземпляром определённого класса , а классы образуют иерархию наследования .

Идеологически ООП - подход к программированию как к моделированию информационных объектов, решающий на новом уровне основную задачу структурного программирования : структурирование информации с точки зрения управляемости , что существенно улучшает управляемость самим процессом моделирования, что, в свою очередь, особенно важно при реализации крупных проектов.

Управляемость для иерархических систем предполагает минимизацию избыточности данных (аналогичную нормализации) и их целостность, поэтому созданное удобно управляемым - будет и удобно пониматься. Таким образом, через тактическую задачу управляемости решается стратегическая задача - транслировать понимание задачи программистом в наиболее удобную для дальнейшего использования форму.

Наиболее заметные отличия в проявлении показателей качества между языками разных видов:

  • В мейнстримных языках декларируемые принципы нацелены на повышение изначально низкого для императивного программирования коэффициента повторного использования кода . В полиморфно типизированных применение концепций ООП, напротив, означает очевидное его снижение из-за перехода от параметрического полиморфизма к ad-hoc-полиморфизму . В динамически типизированных языках (Smalltalk , Python , Ruby) эти принципы используются для логической организации программы, и их влияние на коэффициент повторного использования трудно спрогнозировать - он сильно зависит от дисциплины программиста. Например, в CLOS мультиметоды одновременно являются функциями первого класса , что позволяет рассматривать их одновременно и как связанно квантифицированные , и как обобщённые (истинно полиморфные).
  • Традиционные ОО-языки используют номинативную типизацию , то есть допустимость соиспользования объектов разных классов только при условии явного указания родственных отношений между классами. Для полиморфно типизированных языков характерна структурная типизация , то есть согласование классов между собой тем же механизмом, что и согласование числа 5 с типом int . Динамически типизированные языки также занимают здесь промежуточную позицию.

Обобщённое обоснование динамической диспетчеризации (включая множественную) в середине 1990-х годов построил Джузеппе Кастанья .

История

ООП возникло в результате развития идеологии процедурного программирования , где данные и подпрограммы (процедуры, функции) их обработки формально не связаны. Для дальнейшего развития объектно-ориентированного программирования часто большое значение имеют понятия события (так называемое событийно-ориентированное программирование) и компонента (компонентное программирование , КОП).

Взаимодействие объектов происходит посредством . Результатом дальнейшего развития ООП, по-видимому, будет агентно-ориентированое программирование , где агенты - независимые части кода на уровне выполнения. Взаимодействие агентов происходит посредством изменения среды , в которой они находятся.

Языковые конструкции, конструктивно не относящиеся непосредственно к объектам, но сопутствующие им для их безопасной (исключительные ситуации , проверки) и эффективной работы, инкапсулируются от них в аспекты (в аспектно-ориентированном программировании). Субъектно-ориентированное программирование расширяет понятие объекта посредством обеспечения более унифицированного и независимого взаимодействия объектов. Может являться переходной стадией между ООП и агентным программированием в части самостоятельного их взаимодействия.

Первым языком программирования, в котором были предложены основные понятия, впоследствии сложившиеся в парадигму, была Симула , но термин «объектная ориентированность» не использовался в контексте использования этого языка. В момент его появления в 1967 году в нём были предложены революционные идеи: объекты, классы, виртуальные методы и др., однако это всё не было воспринято современниками как нечто грандиозное. Фактически, Симула была «Алголом с классами», упрощающим выражение в процедурном программировании многих сложных концепций. Понятие класса в Симуле может быть полностью определено через композицию конструкций Алгола (то есть класс в Симуле - это нечто сложное, описываемое посредством примитивов).

Взгляд на программирование «под новым углом» (отличным от процедурного) предложили Алан Кэй и Дэн Ингаллс в языке Smalltalk . Здесь понятие класса стало основообразующей идеей для всех остальных конструкций языка (то есть класс в Смолтоке является примитивом, посредством которого описаны более сложные конструкции). Именно он стал первым широко распространённым объектно-ориентированным языком программирования .

В настоящее время количество прикладных языков программирования (список языков), реализующих объектно-ориентированную парадигму, является наибольшим по отношению к другим парадигмам. Наиболее распространённые в промышленности языки (С++, Delphi, C#, Java и др.) воплощают объектную модель Симулы. Примерами языков, опирающихся на модель Смолтока, являются Objective-C, Python, Ruby.

Определение ООП и его основные концепции

В центре ООП находится понятие объекта. Объект - это сущность, которой можно посылать сообщения и которая может на них реагировать, используя свои данные. Объект - это экземпляр класса. Данные объекта скрыты от остальной программы. Инкапсуляция включает в себя сокрытие (Но им не является!).

Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности - для этого требуется наличие наследования .

Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм подтипов - возможность единообразно обрабатывать объекты с различной реализацией при условии наличия общего интерфейса.

Сложности определения

ООП имеет уже более чем сорокалетнюю историю, но, несмотря на это, до сих пор не существует чёткого общепринятого определения данной технологии . Основные принципы, заложенные в первые объектные языки и системы, подверглись существенному изменению (или искажению) и дополнению при многочисленных реализациях последующего времени. Кроме того, примерно с середины 1980-х годов термин «объектно-ориентированный» стал модным , в результате с ним произошло то же самое, что несколько раньше с термином «структурный» (ставшим модным после распространения технологии структурного программирования) - его стали искусственно «прикреплять» к любым новым разработкам, чтобы обеспечить им привлекательность. Бьёрн Страуструп в 1988 году писал, что обоснование «объектной ориентированности» чего-либо, в большинстве случаев, сводится к некорректному силлогизму : «X - это хорошо. Объектная ориентированность - это хорошо. Следовательно , X является объектно-ориентированным».

Роджер Кинг аргументированно настаивал, что его кот является объектно-ориентированным. Кроме прочих своих достоинств, кот демонстрирует характерное поведение, реагирует на сообщения, наделён унаследованными реакциями и управляет своим, вполне независимым, внутренним состоянием.

Однако общность механизма обмена сообщениями имеет и другую сторону - «полноценная» передача сообщений требует дополнительных накладных расходов, что не всегда приемлемо. Поэтому во многих современных объектно-ориентированных языках программирования используется концепция «отправка сообщения как вызов метода» - объекты имеют доступные извне методы, вызовами которых и обеспечивается взаимодействие объектов. Данный подход реализован в огромном количестве языков программирования, в том числе C++ , Object Pascal , Java , Oberon-2 . Однако, это приводит к тому, что сообщения уже не являются самостоятельными объектами, и, как следствие, не имеют атрибутов, что сужает возможности программирования. Некоторые языки используют гибридное представление, демонстрируя преимущества одновременно обоих подходов - например, CLOS , Python .

Концепция виртуальных методов , поддерживаемая этими и другими современными языками, появилась как средство обеспечить выполнение нужных методов при использовании полиморфных переменных, то есть, по сути, как попытка расширить возможности вызова методов для реализации части функциональности, обеспечиваемой механизмом обработки сообщений.

Особенности реализации

Как уже говорилось выше, в современных объектно-ориентированных языках программирования каждый объект является значением, относящимся к определённому классу . Класс представляет собой объявленный программистом составной тип данных , имеющий в составе:

Поля данных Параметры объекта (конечно, не все, а только необходимые в программе), задающие его состояние (свойства объекта предметной области). Иногда поля данных объекта называют свойствами объекта, из-за чего возможна путаница. Фактически поля представляют собой значения (переменные, константы), объявленные как принадлежащие классу. Методы Процедуры и функции, связанные с классом. Они определяют действия, которые можно выполнять над объектом такого типа, и которые сам объект может выполнять.

Классы могут наследоваться друг от друга. Класс-потомок получает все поля и методы класса-родителя, но может дополнять их собственными либо переопределять уже имеющиеся. Большинство языков программирования поддерживает только единичное наследование (класс может иметь только один класс-родитель), лишь в некоторых допускается множественное наследование - порождение класса от двух или более классов-родителей. Множественное наследование создаёт целый ряд проблем, как логических, так и чисто реализационных, поэтому в полном объёме его поддержка не распространена. Вместо этого в 1990-е годы появилось и стало активно вводиться в объектно-ориентированные языки понятие интерфейса . Интерфейс - это класс без полей и без реализации, включающий только заголовки методов. Если некий класс наследует (или, как говорят, реализует) интерфейс, он должен реализовать все входящие в него методы. Использование интерфейсов предоставляет относительно дешёвую альтернативу множественному наследованию.

Взаимодействие объектов в абсолютном большинстве случаев обеспечивается вызовом ими методов друг друга.

Инкапсуляция обеспечивается следующими средствами:

Контроль доступа Поскольку методы класса могут быть как чисто внутренними, обеспечивающими логику функционирования объекта, так и внешними, с помощью которых взаимодействуют объекты, необходимо обеспечить скрытость первых при доступности извне вторых. Для этого в языки вводятся специальные синтаксические конструкции, явно задающие область видимости каждого члена класса. Традиционно это модификаторы public, protected и private, обозначающие, соответственно, открытые члены класса, члены класса, доступные внутри класса и из классов-потомков, и скрытые, доступные только внутри класса. Конкретная номенклатура модификаторов и их точный смысл различаются в разных языках. Методы доступа Поля класса в общем случае не должны быть доступны извне, поскольку такой доступ позволил бы произвольным образом менять внутреннее состояние объектов. Поэтому поля обычно объявляются скрытыми (либо язык в принципе не позволяет обращаться к полям класса извне), а для доступа к находящимся в полях данным используются специальные методы, называемые методами доступа. Такие методы либо возвращают значение того или иного поля, либо производят запись в это поле нового значения. При записи метод доступа может проконтролировать допустимость записываемого значения и, при необходимости, произвести другие манипуляции с данными объекта, чтобы они остались корректными (внутренне согласованными). Методы доступа называют ещё аксессорами (от англ. access - доступ), а по отдельности - геттерами (англ. get - чтение) и сеттерами (англ. set - запись) . Свойства объекта Псевдополя, доступные для чтения и/или записи. Свойства внешне выглядят как поля и используются аналогично доступным полям (с некоторыми исключениями), однако фактически при обращении к ним происходит вызов методов доступа. Таким образом, свойства можно рассматривать как «умные» поля данных, сопровождающие доступ к внутренним данным объекта какими-либо дополнительными действиями (например, когда изменение координаты объекта сопровождается его перерисовкой на новом месте). Свойства, по сути, не более чем синтаксический сахар , поскольку никаких новых возможностей они не добавляют, а лишь скрывают вызов методов доступа. Конкретная языковая реализация свойств может быть разной. Например, в объявление свойства непосредственно содержит код методов доступа, который вызывается только при работе со свойствами, то есть не требует отдельных методов доступа, доступных для непосредственного вызова. В Delphi объявление свойства содержит лишь имена методов доступа, которые должны вызываться при обращении к полю. Сами методы доступа представляют собой обычные методы с некоторыми дополнительными требованиями к сигнатуре .

Полиморфизм реализуется путём введения в язык правил, согласно которым переменной типа «класс» может быть присвоен объект любого класса-потомка её класса.

Проектирование программ в целом

ООП ориентировано на разработку крупных программных комплексов, разрабатываемых командой программистов (возможно, достаточно большой). Проектирование системы в целом, создание отдельных компонентов и их объединение в конечный продукт при этом часто выполняется разными людьми, и нет ни одного специалиста, который знал бы о проекте всё.

Объектно-ориентированное проектирование ориентируется на описание структуры проектируемой системы (приоритетно по отношению к описанию её поведения, в отличие от функционального программирования), то есть, фактически, в ответе на два основных вопроса:

  • Из каких частей состоит система ;
  • В чём состоит ответственность каждой из её частей .

Выделение частей производится таким образом, чтобы каждая имела минимальный по объёму и точно определённый набор выполняемых функций (обязанностей), и при этом взаимодействовала с другими частями как можно меньше.

Дальнейшее уточнение приводит к выделению более мелких фрагментов описания. По мере детализации описания и определения ответственности выявляются данные, которые необходимо хранить, наличие близких по поведению агентов, которые становятся кандидатами на реализацию в виде классов с общими предками. После выделения компонентов и определения интерфейсов между ними реализация каждого компонента может проводиться практически независимо от остальных (разумеется, при соблюдении соответствующей технологической дисциплины).

Большое значение имеет правильное построение иерархии классов. Одна из известных проблем больших систем, построенных по ООП-технологии - так называемая проблема хрупкости базового класса . Она состоит в том, что на поздних этапах разработки, когда иерархия классов построена и на её основе разработано большое количество кода, оказывается трудно или даже невозможно внести какие-либо изменения в код базовых классов иерархии (от которых порождены все или многие работающие в системе классы). Даже если вносимые изменения не затронут интерфейс базового класса, изменение его поведения может непредсказуемым образом отразиться на классах-потомках. В случае крупной системы разработчик базового класса просто не в состоянии предугадать последствия изменений, он даже не знает о том, как именно базовый класс используется и от каких особенностей его поведения зависит корректность работы классов-потомков.

Различные ООП-методологии

Компонентное программирование - следующий этап развития ООП; прототип- и класс-ориентированное программирование - разные подходы к созданию программы, которые могут комбинироваться, имеющие свои преимущества и недостатки.

Компонентное программирование

Компонентно-ориентированное программирование - это своеобразная «надстройка» над ООП, набор правил и ограничений, направленных на построение крупных развивающихся программных систем с большим временем жизни. Программная система в этой методологии представляет собой набор компонентов с хорошо определёнными интерфейсами. Изменения в существующую систему вносятся путём создания новых компонентов в дополнение или в качестве замены ранее существующих. При создании новых компонентов на основе ранее созданных запрещено использование наследования реализации - новый компонент может наследовать лишь интерфейсы базового. Таким образом, компонентное программирование обходит проблему хрупкости базового класса.

Прототипное программирование

Прототипное программирование , сохранив часть черт ООП, отказалось от базовых понятий - класса и наследования.

  • Прототип - это объект-образец, по образу и подобию которого создаются другие объекты. Объекты-копии могут сохранять связь с родительским объектом, автоматически наследуя изменения в прототипе; эта особенность определяется в рамках конкретного языка .
  • Вместо механизма описания классов и порождения экземпляров, язык предоставляет механизм создания объекта (путём задания набора полей и методов, которые объект должен иметь) и механизм клонирования объектов.
  • Каждый вновь созданный объект является «экземпляром без класса». Каждый объект может стать прототипом - быть использован для создания нового объекта с помощью операции клонирования . После клонирования новый объект может быть изменён, в частности, дополнен новыми полями и методами.
  • Клонированный объект либо становится полной копией прототипа, хранящей все значения его полей и дублирующей его методы, либо сохраняет ссылку на прототип, не включая в себя клонированных полей и методов до тех пор, пока они не будут изменены. В последнем случае среда исполнения обеспечивает механизм делегирования - если при обращении к объекту он сам не содержит нужного метода или поля данных, вызов передаётся прототипу, от него, при необходимости - дальше по цепочке.

Класс-ориентированное программирование

Класс-ориентированное программирование - это программирование, сфокусированное на данных, причём данные и поведение неразрывно связаны между собой. Вместе данные и поведение представляют собой класс. Соответственно в языках, основанных на понятии «класс», все объекты разделены на два основных типа - классы и экземпляры. Класс определяет структуру и функциональность (поведение), одинаковую для всех экземпляров данного класса. Экземпляр является носителем данных - то есть обладает состоянием, меняющимся в соответствии с поведением, заданным классом. В класс-ориентированных языках новый экземпляр создаётся через вызов конструктора класса (возможно, с набором параметров). Получившийся экземпляр имеет структуру и поведение, жёстко заданные его классом.

Производительность объектных программ

Гради Буч указывает на следующие причины, приводящие к снижению производительности программ из-за использования объектно-ориентированных средств:

Динамическое связывание методов Обеспечение полиморфного поведения объектов приводит к необходимости связывать методы, вызываемые программой (то есть определять, какой конкретно метод будет вызываться) не на этапе компиляции, а в процессе исполнения программы, на что тратится дополнительное время. При этом реально динамическое связывание требуется не более чем для 20 % вызовов, но некоторые ООП-языки используют его постоянно. Значительная глубина абстракции ООП-разработка часто приводит к созданию «многослойных» приложений, где выполнение объектом требуемого действия сводится к множеству обращений к объектам более низкого уровня. В таком приложении происходит очень много вызовов методов и возвратов из методов, что, естественно, сказывается на производительности. Наследование «размывает» код Код, относящийся к «конечным» классам иерархии наследования, которые обычно и используются программой непосредственно, находится не только в самих этих классах, но и в их классах-предках. Относящиеся к одному классу методы фактически описываются в разных классах. Это приводит к двум неприятным моментам:

  • Снижается скорость трансляции, так как компоновщику приходится подгружать описания всех классов иерархии.
  • Снижается производительность программы в системе со страничной памятью - поскольку методы одного класса физически находятся в разных местах кода, далеко друг от друга, при работе фрагментов программы, активно обращающихся к унаследованным методам, система вынуждена производить частые переключения страниц.
Инкапсуляция снижает скорость доступа к данным Запрет на прямой доступ к полям класса извне приводит к необходимости создания и использования методов доступа. И написание, и компиляция, и исполнение методов доступа сопряжены с дополнительными расходами. Динамическое создание и уничтожение объектов Динамически создаваемые объекты, как правило, размещаются в куче , что менее эффективно, чем размещение их на стеке и, тем более, статическое выделение памяти под них на этапе компиляции.

Несмотря на отмеченные недостатки, Буч утверждает, что выгоды от использования ООП более весомы. Кроме того, повышение производительности за счёт лучшей организации ООП-кода, по его словам, в некоторых случаях компенсирует дополнительные накладные расходы на организацию функционирования программы. Можно также заметить, что многие эффекты снижения производительности могут сглаживаться или даже полностью устраняться за счёт качественной оптимизации кода компилятором. Например, упомянутое выше снижение скорости доступа к полям класса из-за использования методов доступа устраняется, если компилятор вместо вызова метода доступа использует инлайн-подстановку (современные компиляторы делают это вполне уверенно).

Критика ООП

Несмотря на отдельные критические замечания в адрес ООП, в настоящее время именно эта парадигма используется в подавляющем большинстве промышленных проектов. Однако нельзя считать, что ООП является наилучшей из методик программирования во всех случаях.

Критические высказывания в адрес ООП:

  • Было показано отсутствие значимой разницы в продуктивности разработки программного обеспечения между ООП и процедурным подходом .
  • Кристофер Дэйт указывает на невозможность сравнения ООП и других технологий во многом из-за отсутствия строгого и общепризнанного определения ООП .
  • Александр Степанов в одном из своих интервью указывал, что ООП «методологически неправильно» и что «…ООП практически такая же мистификация , как и искусственный интеллект …» .
  • Фредерик Брукс указывает, что наиболее сложной частью создания программного обеспечения является «…спецификация, дизайн и тестирование концептуальных конструкций, а отнюдь не работа по выражению этих концептуальных конструкций…». ООП (наряду с такими технологиями как искусственный интеллект, верификация программ, автоматическое программирование, графическое программирование , экспертные системы и др.), по его мнению, не является «серебряной пулей», которая могла бы на порядок величины снизить сложность разработки программных систем. Согласно Бруксу, «…ООП позволяет сократить только привнесённую сложность в выражение дизайна. Дизайн остаётся сложным по своей природе…» .
  • Эдсгер Дейкстра указывал: «…то, о чём общество в большинстве случаев просит - это эликсир от всех болезней. Естественно, „эликсир“ имеет очень впечатляющие названия, иначе будет очень трудно что-то продать: „Структурный анализ и Дизайн“, „Программная инженерия“, „Модели зрелости“, „Управляющие информационные системы“ (Management Information Systems), „Интегрированные среды поддержки проектов“, „Объектная ориентированность“, „Реинжиниринг бизнес-процессов “…» .
  • Никлаус Вирт считает, что ООП - не более чем тривиальная надстройка над структурным программированием [ ] , и преувеличение её значимости, выражающееся, в том числе, во включении в языки программирования всё новых модных «объектно-ориентированных» средств, вредит качеству разрабатываемого программного обеспечения.
  • Патрик Киллелиа в своей книге «Тюнинг веб-сервера» писал: «…ООП предоставляет вам множество способов замедлить работу ваших программ…».
  • Известная обзорная статья проблем современного ООП-программирования перечисляет некоторые типичные проблемы ООП [ ] .
  • В программистском фольклоре получила широкое распространение критика объектно-ориентированного подхода в сравнении с функциональным подходом с использованием метафоры «Королевства Существительных » из эссе Стива Йегги .

Если попытаться классифицировать критические высказывания в адрес ООП, можно выделить несколько аспектов критики данного подхода к программированию.

Критика рекламы ООП Критикуется явно высказываемое или подразумеваемое в работах некоторых пропагандистов ООП, а также в рекламных материалах «объектно-ориентированных» средств разработки представление об объектном программировании как о некоем всемогущем подходе, который магическим образом устраняет сложность программирования. Как замечали многие, в том числе упомянутые выше Брукс и Дейкстра, «серебряной пули не существует» - независимо от того, какой парадигмы программирования придерживается разработчик, создание нетривиальной сложной программной системы всегда сопряжено со значительными затратами интеллектуальных ресурсов и времени. Из наиболее квалифицированных специалистов в области ООП никто, как правило, не отрицает справедливость критики этого типа. Оспаривание эффективности разработки методами ООП Критики оспаривают тезис о том, что разработка объектно-ориентированных программ требует меньше ресурсов или приводит к созданию более качественного ПО. Проводится сравнение затрат на разработку разными методами, на основании которого делается вывод об отсутствии у ООП преимуществ в данном направлении. Учитывая крайнюю сложность объективного сравнения различных разработок, подобные сопоставления, как минимум, спорны. С другой стороны, получается, что ровно так же спорны и утверждения об эффективности ООП. Производительность объектно-ориентированных программ Указывается на то, что целый ряд «врождённых особенностей» ООП-технологии делает построенные на её основе программы технически менее эффективными, по сравнению с аналогичными необъектными программами. Не отрицая действительно имеющихся дополнительных накладных расходов на организацию работы ООП-программ (см. раздел «Производительность» выше), нужно, однако, отметить, что значение снижения производительности часто преувеличивается критиками. В современных условиях, когда технические возможности компьютеров чрезвычайно велики и постоянно растут, для большинства прикладных программ техническая эффективность оказывается менее существенна, чем функциональность, скорость разработки и сопровождаемость. Лишь для некоторого, очень ограниченного класса программ (ПО встроенных систем, драйверы устройств, низкоуровневая часть системного ПО, научное ПО) производительность остаётся критическим фактором. Критика отдельных технологических решений в ООП-языках и библиотеках Эта критика многочисленна, но затрагивает она не ООП как таковое, а приемлемость и применимость в конкретных случаях тех или иных реализаций её механизмов. Одним из излюбленных объектов критики является язык C++, входящий в число наиболее распространённых промышленных ООП-языков.

Объектно-ориентированные языки

Многие современные языки специально созданы для облегчения объектно-ориентированного программирования. Однако следует отметить, что можно применять техники ООП и для не-объектно-ориентированного языка и наоборот, применение объектно-ориентированного языка вовсе не означает, что код автоматически становится объектно-ориентированным.

Этой статьей я начинаю серию публикаций о теории объектно-ориентированной методологии разработки программного обеспечения. Сегодня речь пойдет об одной из основных концепций ООП — объекте .

Объекты в ООП — это объекты реального мира

Любые программные системы предназначены для моделирования реальных систем, поэтому очень важно в каких терминах мы пытаемся описать эти реальные системы. Описание в виде последовательности действий (процедурный подход к программированию) оказался довольно сложным. Объектно-ориентированный подход предлагает описывать системы в виде взаимодействия объектов.

Предположим что нам нужно разработать систему автоматизации банка. Эта система могла быть осуществлена следующим образом:

В операции снятия денег через банкомат участвуют 3 объекта : «клиент Иванов», «банкомат на Тверской» и «счет № 66579801», который открыт в данном банке для Иванова. Подойдя к банкомату и засунув свою карточку, объект «клиент Иванов» посылает банкомату сообщение «Начать работу». Получив такое сообщение, банкомат выводит на экран какую-нибудь информацию и запрашивает код доступа, т.е объект «банкомат на Тверской» посылает сообщение объекту «клиент Иванов» — «Сообщить идентификационный код». Если идентификация прошла успешно, «клиент Иванов» просит выдать ему 1000 рублей. Он посылает сообщение об этом банкомату, а тот в свою очередь объекту «счет № 66579801». Приняв это сообщение объект «счет № 66579801» проверяет есть ли у него 1000 рублей, и, если есть, пересылает разрешение на снятие денег, одновременно уменьшая свой баланс на соответствующую сумму. Банкомат передает деньги и на этом процедура заканчивается.

Объекты выполняют необходимые действия передавая друг другу сообщения.

Описание в виде объектов позволяет определить различные компоненты системы. Те же самые объекты — «счет № 66579801» и «клиент Иванов» — будут учавствовать в другой операции при которой клиент приходит в отделение банка для снятие или зачисления денег на свой счет.

Приведенная ситуация является ярким примером сущности понятия «объект в ООП «. Сложно дать четкое определение этому понятию, приведу цитату этого определения Ивара Якобсона:

Объект в ООП — это сущность, способная сохранять свое состояние (информацию) и обеспечивающая набор операций (поведение) для проверки и изменения этого состояния.

Объект в объектно-ориентированном программировании — это модель или абстракция реальной сущности в программной системе. Предмет моделирования при построении объекта в ООП может быть различным. Например, могут существовать следующие типы абстракции, используемые при построении объекта:

  • абстракция понятия: объект — это модель какого-то понятия предметной области;
  • абстракция действия: объект объединяет набор операций для выполнения какой-либо функции;
  • абстракция виртуальной машины: объект объединяет операции, которые используются другими, более высокими уровнями абстракции;
  • случайная абстракция: объект объединяет не связанные между собой операции.

Состояние объекта в ООП

Каждый объект в ООП характеризуется своим состоянием. Состояние банковского счета — это сумма лежащих на нем денег. Состояние банкомата включает в себя состояние «включен» или «выключен», готов или не готов к принятию запроса, наличию денег в банкомате.

Состояние объекта характеризуется текущим значением его атрибутов . В нашем примере у счета есть атрибут -баланс. В простейшем случае он отражается числом — количеством рублей и копеек на счету. Операция снятия или зачисления на счет изменяет баланс и атрибут объекта «счет № 66579801». У объекта «банкомат на Тверской» есть несколько атрибутов. Количество денег в банкомате может характеризоваться числом. Состояние «включен» или «выключен» и состояние «готов или не готов к принятию запроса» — логическим значением.

Стоит заметить, что атрибутами объекта в ООП могут быть не только простейшие значения (число, логическое значение и т.д.), но и сложные величины или другие объекты. Например, наш банк для целей контроля будет хранить историю всех транзакций. Транзакция — это объект, который имеет атрибуты (характеристики) тип транзакции, сумма переведенных денег, место совершения и имена контрагентов этой операции. У объекта «счет № 66579801» появится новый атрибут — «история транзакций», который будет состоять из набора объектов-транзакций.

Идентификация объектов в ООП

Иногда нужно идентифицировать объекты в ООП, т.е., если имеются два объекта, как можно определить что эти объекты разные. Например, такая процедура очень важна для идентификации банковского счета (объект «счет № 66579801») клиента банка Иванова.

На самом деле существует два вопроса: равны ли два объекта или тождественны.

Обычно для идентификации применяются специальные атрибуты объектов — идентификаторы. Например, для объекта «счет № 66579801» идентификатором является его атрибут «номер счета», который является уникальным (соблюдается требование предметной области).

В свою очередь, зная идентификаторы объектов можно точно определить являются ли они тождественными или нет.

Интерфейс объекта в ООП

Важнейшей характеристикой объекта в ООП является описание того, как он может взаимодействовать с окружающим миром. Это описание называется интерфейсом объекта .

Объекты в ООП взаимодействуют между собой с помощью сообщений. Принимая сообщение, объект выполняет соответствующее действие. Эти действия обычно называются методами .

В нашем примере у объекта «счет № 66579801» есть следующие методы — «снять деньги со счета» и «положить деньги на счет». Эти два метода и составляют интерфейс объекта. У объекта «клиент Иванов» имеется метод «Сообщить свой код». А у объекта «банкомат на Тверской » есть методы «начать работу», «принять деньги», «выдать деньги».

У объекта «счет № 66579801» есть еще один атрибут «баланс». Является ли он частью интерфейса объекта? Интерфейс — это внешнее описание объекта. При разработке банковской системы и, в частности, объекта «счет», мы решаем вопрос: является ли баланс необходимой информацией для других объектов? Очевидно, что является. Тогда нам нужно ответить на еще один вопрос: что именно нужно другим объектам? Остаток денег на счете. В таком случае необходимо добавить еще один метод «сообщить остаток денег на счете» к объекту «счет» , и его интерфейс будет теперь состоять из трех методов.

Таким образом, атрибут баланс не является непосредственно частью интерфейса. Другие объекты могут обратиться к этому атрибуту только опосредственно, с помощью метода «сообщить остаток на счете» (тем самым они не могут непосредственно менять значение этого атрибута).

Наряду с методами и атрибутами, входящими в интерфейс и доступными другим объектам, у объекта могут быть атрибуты предназначенные для внутреннего использования (к ним может обращаться только сам объект). Например, у банкомата очень сложная внутренняя структура, т.е. он имеет огромное количество атрибутов. Но для банковской системы они не важны, и ни клиент, ни объект «счет» не могут к ним обратиться. Они не входят в интерфейс объекта «банкомат».

Время жизни объекта в ООП

В любой системе объекты создаются, функционируют и уничтожаются. В программировании существуют два способа уничтожения объектов:

  1. Объекты должны уничтожаться явно, с помощью специальных вызовов
  2. Объекты уничтожаются тогда, когда они никому не нужны (в системе отсутствуют все ссылки на данный объект). Такое уничтожение иногда называется уничтожением по достижимости

Но в тоже время могут существовать объекты, для которых необходимо восстанавливать их предыдущее состояние при новом запуске программы. Для работы с такими объектами применяется метод сериализации , когда значения всех атрибутов записываются, и, при необходимости восстановления объекта, считываются. Схема данного метода представлена ниже.

Существуют, также, и постоянные объекты, которые не уничтожаются при завершении программы и не создаются заново при ее запуске (объекты объектно-ориентированной базы данных). Программа и при первом и при втором запуске обращается к одному и тому же объекту, хранящемуся в постоянной памяти.

Со временем жизни и идентификации объектов тесно связано еще одно понятие — понятие объектов первого и второго сорта или равноправия объектов в системе.
Объект считается самостоятельным или первого сорта, в том случае, если он обладает всеми признаками идентификации объектов, принятыми в данной объектной среде, и время его жизни не связано со временем жизни породившего его объекта.

Композиция объектов в ООП

Объект может состоять из других объектов. Например, банкомат содержит большое количество узлов (атрибутов), т.е он включает в свой состав другие объекты. При этом, банкомат может непосредственно включать в себя другие объекты или же только ссылаться на них.

В следующей статье будут рассмотрены классы в ООП, как способ описания структуры и поведения объектов.