Интеграл от иррациональной функции. Интегрирование иррациональных и тригонометрических функций

Определение 1

Совокупность всех первообразных заданной функции $y=f(x)$, определенной на некотором отрезке, называется неопределенным интегралом от заданной функции $y=f(x)$. Неопределенный интеграл обозначается символом $\int f(x)dx $.

Замечание

Определение 2 можно записать следующим образом:

\[\int f(x)dx =F(x)+C.\]

Не от всякой иррациональной функции можно выразить интеграл через элементарные функции. Однако большинство таких интегралов с помощью подстановок можно привести к интегралам от рациональных функций, которые можно выразить интеграл через элементарные функции.

    $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $;

    $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $;

    $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $.

I

При нахождении интеграла вида $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

При данной подстановке каждая дробная степень переменной $x$ выражается через целую степень переменной $t$. В результате чего подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 1

Выполнить интегрирование:

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} .\]

Решение:

$k=4$ - общий знаменатель дробей $\frac{1}{2} ,\, \, \frac{3}{4} $.

\ \[\begin{array}{l} {\int \frac{x^{1/2} dx}{x^{3/4} +1} =4\int \frac{t^{2} }{t^{3} +1} \cdot t^{3} dt =4\int \frac{t^{5} }{t^{3} +1} dt =4\int \left(t^{2} -\frac{t^{2} }{t^{3} +1} \right)dt =4\int t^{2} dt -4\int \frac{t^{2} }{t^{3} +1} dt =\frac{4}{3} \cdot t^{3} -} \\ {-\frac{4}{3} \cdot \ln |t^{3} +1|+C} \end{array}\]

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} =\frac{4}{3} \cdot \left+C\]

II

При нахождении интеграла вида $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

где $k$ - общий знаменатель дробей $\frac{m}{n} ,...,\frac{r}{s} $.

В результате данной подстановки подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 2

Выполнить интегрирование:

\[\int \frac{\sqrt{x+4} }{x} dx .\]

Решение:

Сделаем следующую подстановку:

\ \[\int \frac{\sqrt{x+4} }{x} dx =\int \frac{t^{2} }{t^{2} -4} dt =2\int \left(1+\frac{4}{t^{2} -4} \right)dt =2\int dt +8\int \frac{dt}{t^{2} -4} =2t+2\ln \left|\frac{t-2}{t+2} \right|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{\sqrt{x+4} }{x} dx =2\sqrt{x+4} +2\ln \left|\frac{\sqrt{x+4} -2}{\sqrt{x+4} +2} \right|+C.\]

III

При нахождении интеграла вида $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $ выполняется так называемая подстановка Эйлера (используется одна из трех возможных подстановок).

Первая подстановка Эйлера

Для случая $a>

Взяв перед $\sqrt{a} $ знак «+», получим

Пример 3

Выполнить интегрирование:

\[\int \frac{dx}{\sqrt{x^{2} +c} } .\]

Решение:

Сделаем следующую подстановку (случай $a=1>0$):

\[\sqrt{x^{2} +c} =-x+t,\, \, x=\frac{t^{2} -c}{2t} ,\, \, dx=\frac{t^{2} +c}{2t^{2} } dt,\, \, \sqrt{x^{2} +c} =-\frac{t^{2} -c}{2t} +t=\frac{t^{2} +c}{2t} .\] \[\int \frac{dx}{\sqrt{x^{2} +c} } =\int \frac{\frac{t^{2} +c}{2t^{2} } dt}{\frac{t^{2} +c}{2t} } =\int \frac{dt}{t} =\ln |t|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{dx}{\sqrt{x^{2} +c} } =\ln |\sqrt{x^{2} +c} +x|+C.\]

Вторая подстановка Эйлера

Для случая $c>0$ необходимо выполнить следующую подстановку:

Взяв перед $\sqrt{c} $ знак «+», получим

Пример 4

Выполнить интегрирование:

\[\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx .\]

Решение:

Сделаем следующую подстановку:

\[\sqrt{1+x+x^{2} } =xt+1.\]

\ \[\sqrt{1+x+x^{2} } =xt+1=\frac{t^{2} -t+1}{1-t^{2} } \] \

$\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =\int \frac{(-2t^{2} +t)^{2} (1-t)^{2} (1-t^{2})(2t^{2} -2t+2)}{(1-t^{2})^{2} (2t-1)^{2} (t^{2} -t+1)(1-t^{2})^{2} } dt =\int \frac{t^{2} }{1-t^{2} } dt =-2t+\ln \left|\frac{1+t}{1-t} \right|+C$Сделав обратную замену, получим окончательный результат:

\[\begin{array}{l} {\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +\ln \left|\frac{x+\sqrt{1+x+x^{2} } -1}{x-\sqrt{1+x+x^{2} } +1} \right|+C=-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +} \\ {+\ln \left|2x+2\sqrt{1+x+x^{2} } +1\right|+C} \end{array}\]

Третья подстановка Эйлера

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Класс иррациональных функцийочень широк, поэтому универсального способа их интегрирования просто быть не может. В этой статье попытаемся выделить наиболее характерные виды иррациональных подынтегральных функций и поставить им в соответствие метод интегрирования.

Бывают случаи, когда уместно использование метода подведения под знак дифференциала. Например, при нахождении неопределенных интегралов вида, гдеp – рациональная дробь.

Пример.

Найти неопределенный интеграл .

Решение.

Не трудно заметить, что . Следовательно, подводим под знак дифференциала и используем таблицу первообразных:

Ответ:

.

13. Дробно-линейная подстановка

Интегралы типа где а, b, с, d - действительные числа,a,b,...,d,g - натуральные числа, сводятся к интегралам от рациональной функции путем подстановкигде К - наименьшее общee кратное знаменателей дробей

Действительно, из подстановки следует, чтои

т. е. х и dx выражаются через рациональные функции от t. При этом и каждая степень дроби выражается через рациональную функцию от t.

Пример 33.4 . Найти интеграл

Решение: Наименьшее общee кратное знаменателей дробей 2/3 и 1/2 есть 6.

Поэтому полагаем х+2=t 6 , х=t 6 -2, dx=6t 5 dt, Следовательно,

Пример 33.5. Указать подстановку для нахождения интегралов:

Решение: Для I 1 подстановка х=t 2 , для I 2 подстановка

14. Тригонометрическая подстановка

Интегралы типа приводятся к интегралам от функций, рационально зависящих от тригонометрических функций, с помощью следующих тригонометрических подстановок: х=а sint для первого интеграла; х=а tgt для второго интеграла;для третьего интеграла.

Пример 33.6. Найти интеграл

Решение: Положим х=2 sin t, dx=2 cos tdt, t=arcsin х/2. Тогда

Здесь подынтегральная функция есть рациональная функция относительно х иВыделив под радикалом полный квадрат и сделав подстановку, интегралы указанного типа приводятся к интегралам уже pасcмoтpeннoгo типа, т. е. к интегралам типаЭти интегралы можно вычислить с помощью соответствующих тригонометрических подстановок.

Пример 33.7. Найти интеграл

Решение: Так как х 2 +2х-4=(х+1) 2 -5, то х+1=t, x=t-1, dx=dt. ПоэтомуПоложим

Замечание: Интеграл типа целессooбразно находить с помощью подстановки х=1/t.

15. Определенный интеграл

Пусть функция задана на отрезкеи имеет на нем первообразную. Разностьназываютопределенным интегралом функции по отрезкуи обозначают. Итак,

Разность записывают в виде, тогда. Числаиназываютпределами интегрирования .

Например, одна из первообразных для функции. Поэтому

16 . Если с - постоянное число и функция ƒ(х) интегрируема на , то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

▼Составим интегральную сумму для функции с ƒ(х). Имеем:

Тогда Отсюда вытекает, что функцияс ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).▲

2. Если функции ƒ 1 (х) и ƒ 2 (х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.


Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = х m , то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

▼По формуле Ньютона-Лейбница имеем

где F"(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F"(c) (b-а) = ƒ(с) (b-а).▲

Свойство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].

6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интегралимеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

▼По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с) (b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a

▼Так как ƒ 2 (х)-ƒ 1 (x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М - соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

▼Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть , а высоты равны m и М (см. рис. 171).

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

Вычисление площади фигуры является одной из наиболее не простых проблем теории площадей. В школьном курсе геометрии мы научились находить площади основных геометрических фигур, например, круга, треугольника, ромба и т.п. Однако намного чаще приходится сталкиваться с вычислением площадей более сложных фигур. При решении подобных задач приходится прибегать к интегральному исчислению.

В этой статье мы рассмотрим задачу о вычислении площади криволинейной трапеции, причем подойдем к ней в геометрическом смысле. Это позволит нам выяснить прямую связь между определенным интегралом и площадью криволинейной трапеции.

Готовые ответы по интегрированию функций взяты из контрольной работы для студентов 1, 2 курсов математических факультетов. Чтобы формулы в задачах и ответах не повторялись условия заданий выписывать не будем. Вам и так известно, что в задачах нужно или "Найти интеграл", или "Вычислить интеграл". Поэтому если Вам нужны ответы по интегрированию то начинайте изучать следующие примеры.

Интегрирование иррациональных функций

Пример 18. Выполняем замену переменных под интегралом. Для упрощения вычислений за новую переменную выбираем не только корень, а весь знаменатель. После такой замены интеграл преобразуется к сумме двух табличных интегралов, которые и упрощать не надо

После интегрирования вместо переменной подставляем замену.
Пример 19. На интегрирования этой дробной иррациональной функции потрачено много времени и места и даже не знаем, сможете ли Вы что-то разобрать с планшета или телефона. Чтобы избавиться от иррациональности, а тут имеем дело с корнем кубическим за новую переменную выбираем корневую функцию в третьем степени. Далее находим дифференциал и заменяем предыдущую функцию под интегралом

Больше всего времени занимает расписание новой функции на степенные зависимости и дроби

После преобразований часть интегралов находим сразу, а последний расписываем на два которые превращаем согласно табличных формул интегрирования

После всех вычислений не забываем вернуться к выполненной в начале замене

Интегрирование тригонометрических функций

Пример 20. Нужно найти интеграл от синуса в 7 степени. Согласно правилам один синус нужно загнать в дифференциал (получим дифференциал косинуса), а синус в 6 степени расписать через косинус. Таким образом придем к интегрированию от функции новой переменной t = cos (x). При этом придется подносить разницу к кубу, а потом уже интегрировать



В результате получим полином 7 порядке от косинуса.
Пример 21. В этом интеграле необходимо косинус 4 степени за тригонометрическими формулами расписать через зависимость от косинуса в первой степени. Далее применяем табличную формулу интегрирования косинуса.


Пример 22. Под интегралом имеем произведение синуса на косинус. Согласно тригонометрическим формулам произведение расписываем через разницу синусов. Как получили эту дужку, можно понять из анализа коэффициентов при «икс». Далее интегрируем синусы

Пример 23. Здесь имеем в знаменателе одновременно и синус и косинус функцию. Причем тригонометрические формулы упростить зависимость не помогут. Для нахождения интеграла применим универсальную тригонометрическую замену t=tan(x/2)

Из записи видно что знаменатели сократятся и получим в знаменателе дроби квадратный трехчлен. В нем выделяем полный квадрат и свободную часть. После интегрирования придем к логарифму от разницы простых множителей знаменателя. Для упрощения записи и числитель и знаменатель под логарифмом умножили на двойку.

В конце вычислений вместо переменной подставляем тангенс половины аргумента.
Пример 24. Для интегрирования функции вынесем квадрат косинуса за скобки, а в скобках вычтем и добавим единицу чтобы получить котангенс.

Дальше за новую переменную выбираем котангенс u = ctg (x) , ее дифференциал нам даст нужный для упрощения множитель. После подстановки придем к функции которая при интегрировании дает арктангенс.

Ну и не забываем поменять u на котангенс.
Пример 25. В последнем задании контрольной работы нужно проинтегрировать котангенс двойного угла в 4 степени.


На этом контрольная работа на интегрирование решена, причем ни один преподаватель к ответам и обоснованию преобразований не придерется.
Если научитесь так интегрировать, то тесты или срезы по теме интегралы для Вас не страшны. Все остальные имеют возможность научиться или заказать решения интегралов у нас (или наших конкурентов :))) .

Под иррациональным понимают выражение, в котором независимая переменная %%x%% или многочлен %%P_n(x)%% степени %%n \in \mathbb{N}%% входят под знак радикала (от латинского radix — корень), т.е. возводятся в дробную степень. Некоторые классы иррациональных относительно %%x%% подынтегральных выражений заменой переменной удается свести к рациональным выражениям относительно новой переменной.

Понятие рациональной функции одной переменной можно распространить на несколько аргументов. Если над каждым аргументом %%u, v, \dotsc, w%% при вычислении значения функции предусмотрены лишь арифметические действия и возведение в целую степень, то говорят о рациональной функции этих аргументов, которую обычно обозначают %%R(u, v, \dotsc, w)%%. Аргументы такой функции сами могут быть функциями независимой перменной %%x%%, в том числе и радикалами вида %%\sqrt[n]{x}, n \in \mathbb{N}%%. Например, рациональная функция $$ R(u,v,w) = \frac{u + v^2}{w} $$ при %%u = x, v = \sqrt{x}%% и %%w = \sqrt{x^2 + 1}%% является рациональной функцией $$ R\left(x, \sqrt{x}, \sqrt{x^2+1}\right) = \frac{x + \sqrt{x^2}}{\sqrt{x^2 + 1}} = f(x) $$ от %%x%% и радикалов %%\sqrt{x}%% и %%\sqrt{x^2 + 1}%%, тогда как функция %%f(x)%% будет иррациональной (алгебраической) функцией одной независимой переменной %%x%%.

Рассмотрим интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%%. Такие интегралы рационалируются заменой переменной %%t = \sqrt[n]{x}%%, тогда %%x = t^n, \mathrm{d}x = nt^{n-1}%%.

Пример 1

Найти %%\displaystyle\int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}}%%.

Подынтегральная функция искомого аргумента записана как функция от радикалов степени %%2%% и %%3%%. Так как наименьшее общее кратное чисел %%2%% и %%3%% равно %%6%%, то данный интеграл является интегралом типа %%\int R(x, \sqrt{x}) \mathrm{d}x%% и может быть рационализирован посредством замены %%\sqrt{x} = t%%. Тогда %%x = t^6, \mathrm{d}x = 6t \mathrm{d}t, \sqrt{x} = t^3, \sqrt{x} =t^2%%. Следовательно, $$ \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}} = \int \frac{6t^5 \mathrm{d}t}{t^3 + t^2} = 6\int\frac{t^3}{t+1}\mathrm{d}t. $$ Примем %%t + 1 = z, \mathrm{d}t = \mathrm{d}z, z = t + 1 = \sqrt{x} + 1%% и $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}} &= 6\int\frac{(z-1)^3}{z} \mathrm{d}t = \\ &= 6\int z^2 dz -18 \int z \mathrm{d}z + 18\int \mathrm{d}z -6\int\frac{\mathrm{d}z}{z} = \\ &= 2z^3 - 9 z^2 + 18z -6\ln|z| + C = \\ &= 2 \left(\sqrt{x} + 1\right)^3 - 9 \left(\sqrt{x} + 1\right)^2 + \\ &+~ 18 \left(\sqrt{x} + 1\right) - 6 \ln\left|\sqrt{x} + 1\right| + C \end{array} $$

Интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%% являются частным случаем дробно линейных иррациональностей, т.е. интегралов вида %%\displaystyle\int R\left(x, \sqrt[n]{\dfrac{ax+b}{cd+d}}\right) \mathrm{d}x%%, где %%ad - bc \neq 0%%, которые допускают рационализацию путем замены переменной %%t = \sqrt[n]{\dfrac{ax+b}{cd+d}}%%, тогда %%x = \dfrac{dt^n - b}{a - ct^n}%%. Тогда $$ \mathrm{d}x = \frac{n t^{n-1}(ad - bc)}{\left(a - ct^n\right)^2}\mathrm{d}t. $$

Пример 2

Найти %%\displaystyle\int \sqrt{\dfrac{1 -x}{1 + x}}\dfrac{\mathrm{d}x}{x + 1}%%.

Примем %%t = \sqrt{\dfrac{1 -x}{1 + x}}%%, тогда %%x = \dfrac{1 - t^2}{1 + t^2}%%, $$ \begin{array}{l} \mathrm{d}x = -\frac{4t\mathrm{d}t}{\left(1 + t^2\right)^2}, \\ 1 + x = \frac{2}{1 + t^2}, \\ \frac{1}{x + 1} = \frac{1 + t^2}{2}. \end{array} $$ Следовательно, $$ \begin{array}{l} \int \sqrt{\dfrac{1 -x}{1 + x}}\frac{\mathrm{d}x}{x + 1} = \\ = \frac{t(1 + t^2)}{2}\left(-\frac{4t \mathrm{d}t}{\left(1 + t^2\right)^2}\right) = \\ = -2\int \frac{t^2\mathrm{d}t}{1 + t^2} = \\ = -2\int \mathrm{d}t + 2\int \frac{\mathrm{d}t}{1 + t^2} = \\ = -2t + \text{arctg}~t + C = \\ = -2\sqrt{\dfrac{1 -x}{1 + x}} + \text{arctg}~\sqrt{\dfrac{1 -x}{1 + x}} + C. \end{array} $$

Рассмотрим интегралы вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%%. В простейших случаях такие интегралы сводятся к табличным, если после выделения полного квадрата сделать замену переменных.

Пример 3

Найти интеграл %%\displaystyle\int \dfrac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}}%%.

Учитывая, что %%x^2 + 4x + 5 = (x+2)^2 + 1%%, примем %%t = x + 2, \mathrm{d}x = \mathrm{d}t%%, тогда $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}} &= \int \frac{\mathrm{d}t}{\sqrt{t^2 + 1}} = \\ &= \ln\left|t + \sqrt{t^2 + 1}\right| + C = \\ &= \ln\left|x + 2 + \sqrt{x^2 + 4x + 5}\right| + C. \end{array} $$

В более сложных случаях для нахождения интегралов вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%% используются