Форматы данных и команд эвм. Команды микропроцессора

В цифровых ЭВМ производится обработка информации, представленной в числовом виде. Информацией внутри ЭВМ являются команды и данные, которые необходимо распознать и обработать. В большинстве компьютеров данные и команды обрабатываются по словам, иногда по байтам. Длина слова определяется числом разрядов (битов) из которых состоит слово. Формат слова отображает организацию (назначение) отдельных разрядов в слове. Слова часто делят на слоги по одному байту в слове.

Данные и команды могут быть представлены одним либо несколькими словами. При использовании только одного слова для представления информации каждое слово должно содержать код операции, адрес в памяти и операнд. На рисунке 2.2 показан пример такого слова.

Операционная часть (иначе она еще называется кодом операции - КОП) указывает, какое действие необходимо выполнить с данными. Адресная часть описывает, где используемая информация хранится и куда поместить результат. Совокупность всех кодов операции образует набор команд процессора. Количество команд в ЭВМ равно 2 n 1 , где n 1- количество разрядов для представления команды. Современные ЭВМ выполняют от 20 до нескольких сотен команд: арифметических, логических, сдвиговых, а также команд управления периферийными устройствами. У некоторых немногочисленных команд управления работой машины адресная часть может отсутствовать, например, в команде останова; но операционная часть имеется всегда.

В зависимости от количества возможных операндов команды могут быть одно-, двух- и трехадресные. Первые ЭВМ имели наиболее простую и наглядную трехадресную систему команд. В трехадресной команде указываются адреса первого и второго операндов, а также адрес, куда следует поместить результат операции. Трехадресная команда легко расшифровывается и удобна в использовании, но с ростом объемов ОЗУ ее длина становится непомерно большой. Поэтому были разработаны двухадресные компьютеры, длина команды в которых сокращена за счет исключения адреса записи результата. В таких ЭВМ результат операции остается в специальном регистре (аккумуляторе) и пригоден для использования в последующих вычислениях. В некоторых машинах результат записывался вместо одного из операндов. Дальнейшее упрощение команды привело к созданию одноадресных машин.

Диапазон чисел , представляемых в компьютере, определяется длиной слова данных и используемым способом кодирования. При использовании двоичной системы счисления, максимальное число равно 2 ( n 3 – 1) , где n 3 – количество разрядов, выделенных для кодирования числа. Один разряд предназначается для фиксации знака числа: 0 – положительное, 1 – отрицательное. Отрицательное число может быть выражено не только с помощью знака и значения, но его можно представить также в виде дополнительного кода.



При представлении дробных чисел применяется использование чисел с фиксированной и плавающей запятой. В первом случае программист сам выбирает диапазон изменения чисел. Причем в процессе вычислений этот диапазон не должен быть превышен. Это представляет в ряде случаев определенные трудности. Поэтому во многих ВМ предусматривается возможность обработки чисел с плавающей запятой. Число в этом случае выражается порядком и мантиссой (полулогарифмическая форма).

CISC- и RISC-процессоры

По системе команд и архитектуре различают 2 вида процессоров (компьютеров):

1) с полным набором инструкций - CISC (Complete Instruction Set Computer );

2) с сокращенной системой команд - RISC (Reduced Instruction Set ).

Такие процессоры обычно имеют набор однородных регистров универсального назначения, и их система команд отличается относительной простотой.

Стратегия CISC-архитектуры формировалась в большой степени по желанию программистов иметь в своем распоряжении как можно больший набор команд для упрощения программирования. За первое десятилетие компьютерной эры список команд ЭВМ расширился от нескольких десятков до нескольких сотен.

Для CISC-процессоров характерны следующие признаки:

1) небольшое число регистров общего назначения;

2) большое количество машинных команд;

3) наличие сложных (многотактных) команд, функционально аналогичных операторам языков программирования высокого уровня;

4) большое количество способов адресации,

5) большое количество форматов команд различной разрядности;



6) преобладание двухадресного формата команд;

7) наличие команд обработки типа регистр-память.

Использование CISC-архитектуры упрощает компиляцию программ и уменьшает размеры исполняемых модулей. Но в архитектуре CISC плохо реализуются новейшие технические решения по повышению быстродействия процессоров. Это использование конвейерной, суперконвейерной и суперскалярной обработки, позволяющей в один и тот же момент времени выдавать на выполнение несколько команд.

Стратегия RISC архитектуры формировалась исходя из требований достижения максимальной производительности компьютера. По этой причине главными требованиями архитектуры RISC являлись следующие:

1) любая операция должна выполняться за один такт;

2) система команд должна содержать минимальное количество наиболее часто используемых команд (несколько десятков) одинаковой длины;

3) операции обработки данных реализуются только в формате регистр-регистр. Обмен между регистрами и памятью выполняется только командами загрузки и записи.

В дальнейшем эти требования были несколько смягчены. Выполнение команды за один такт стало трактоваться как загрузка конвейера команд в темпе "команда за такт". Набор команд современных RISC-процессоров возрос и содержит до 150 команд и более.

Незыблемым для архитектуры RISC остается только требование: обработка данных ведется только командами в формате регистр-регистр.

Для архитектуры характерны следующие признаки:

1) наличие внутри процессора достаточно большого файла регистров общего назначения (32 и более регистров);

2) использование для обработки информации трехадресных регистровых команд;

3) команды регистр-память применяются только для загрузки внутренних регистров из памяти и сохранения содержимого регистров общего назначения в памяти,

Использование в программе только простых команд в формате регистр-регистр позволяет увеличить скорость выполнения большинства вычислительных задач в 2-3 раза. В процессе научных исследований было установлено, что в 80% кода программ содержится около 20% простейших команд, а удаление из системы команд сложных операций позволяет уменьшить объём аппаратуры процессора примерно в 10 раз без ощутимого снижения быстродействия. Поэтому в основе современных высокопроизводительных ЭВМ заложена архитектура RISC.

    Как правильно управлять финансами своего бизнеса, если вы не специалист в области финансового анализа - Финансовый анализ

    Финансовый менеджмент - финансовые отношения между суъектами, управление финасами на разных уровнях, управление портфелем ценных бумаг, приемы управления движением финансовых ресурсов - вот далеко не полный перечень предмета "Финансовый менеджмент "

    Поговорим о том, что же такое коучинг ? Одни считают, что это буржуйский брэнд, другие что прорыв с современном бизнессе. Коучинг - это свод правил для удачного ведения бизнесса, а также умение правильно распоряжаться этими правилами

2.3. Структура и форматы команд ЭВМ

Арифметические операции.

г) команды передачи кодов;

Akk:=Аkk*ОП[А1].

Все возможные преобразования, дискретной информации могут быть сведены к четырем основным видам:

Передача информации в пространстве (из одного блока ЭВМ в дру­гой);

Передача информации во времени (хранение);

Логические (поразрядные) операции;

Арифметические операции.

ЭВМ, являющаяся универсальным преобразователем дискретной ин­формации, выполняет указанные виды преобразований.

Обработка информации (решение задач) в ЭВМ осуществляется автома­тически путем программного управления. Программа представляет собой ал­горитм обработки информации (решение задачи), записанный в виде после­довательности команд, которые должны быть выполнены машиной для полу­чения результата.

Команда представляет собой код, определяющий операцию и данные, участвующие в операции. Команда содержит также в явной или не явной форме информацию об адресе, по которому помещается результат операции, и об адресе следующей команды.

По характеру выполняемых операций различают следующие основные группы команд:

а) команды арифметических операций над числами с фиксированной и плавающей точками;

б) команды десятичной арифметики;

в) команды логических операций;

г) команды передачи кодов;

д) команды операций ввода-вывода;

е) команды передачи управления;

ж) команды задания режима работы машины и др.

В команде, как правило, содержатся не сами операнды, а информация об адресах ячеек памяти или регистрах, в которых они находятся.

Команда в общем случае состоит из операционной и адресной частей (рис.2.2,а).

В свою очередь, эти части, что особенно характерно для адресной части, могут состоять из нескольких полей.

Рис. 2.2. Структуры команд: а) обобщенная; б) четырех-; в) трех-;

г) двух -; д) одно -; е) безадресная

Операционная часть содержит код операции (КОП), который задает вид операции (сложение, умножение и др.). Адресная часть содержит информа­цию об адресах операндов и результате операции, а в некоторых случаях -информацию об адресе следующей команды.

Структура команды определяется составом, назначением и расположе­нием полей в команде.

Форматом команды называют ее структуру с разметкой номеров раз­рядов (бит), определяющих границы отдельных полей команды, или с указа­нием числа бит в определенных полях.

Важной и сложной проблемой при проектировании ЭВМ является выбор структуры и форматов команды, т.е. ее длины, назначения и размерности от­дельных ее полей. Естественно стремление разместить в команде в возможно более полной форме информацию о предписываемой командой операции. Однако в условиях, когда в современных ЭВМ значительно возросло число выполняемых различных операций и соответственно команд (в компьютерах с CISC-архитектурой более 200 команд) и значительно увеличилась емкость адресуемой основной памяти (32, 64 Мб), это приводит к недопустимо боль­шой длине формата команды.

Действительно, число двоичных разрядов, отводимых под код операции, должно быть таким, чтобы можно было представить все выполняемые ма­шинные операции. Если ЭВМ выполняет М различных операций, то число разрядов в коде операции

Если основная память содержит S адресуемых ячеек (байт), то для явно­го представления только одного адреса необходимо в команде иметь адрес­ное поле для одного операнда с числом разрядов

Вместе с тем для упрощения аппаратуры и повышения быстродействия ЭВМ длина формата команды должна быть согласована с выбираемой, исхо­дя из требований к точности вычислений, длиной обрабатываемых машиной слов (операндов), составляющей для большинства применений 32 бита с тем, чтобы для операндов и команд можно было эффективно использовать одни и те же память и аппаратные средства обработки информации. Формат коман­ды должен быть по возможности короче, укладываться в машинное слово или полуслово, а для ЭВМ с коротким словом (8-16 бит) должен быть мало­кратным машинному слову. Решение проблемы выбора формата команды значительно усложняется в микропроцессорах, работающих с коротким сло­вом.

Отмечавшиеся ранее характерные для процесса развития ЭВМ расшире­ние системы (наборы) команд и увеличение емкости основной памяти, а осо­бенно создание микроЭВМ с коротким словом, потребовали разработки ме­тодов сокращения длины команды. При решении этой проблемы существен­но видоизменилась структура команды, получили развитие различные спосо­бы адресации информации.

Проследим изменения классических структур команд.

Чтобы команда содержала в явном виде всю необходимую информацию о задаваемой операции, она должна, как это показано на рис. 2.2,6, содержать следующую информацию:

А1 , А2; - адреса операндов, А3 - адрес результата, А4 _ адрес следующей команды (принудительная адресация команд).

Такая структура приводит к большей длине команды (например, при S = 200, S = 32 Мб длина команды - 108 бит) и неприемлема для прямой ад­ресации операндов основной памяти. В компьютерах с RISC-архитектурой четырехадресные команды используются для адресации операндов, храня­щихся в регистровой памяти процессора.

Можно установить, как это принято для большинства машин, что после выполнения данной команды, расположенной по адресу К (и занимающей L ячеек), выполняется команда из (К+L)-й ячейки. Такой порядок выборки ко­манды называется естественным. Он нарушается только специальными ко­мандами (передачи управления). В таком случае отпадает необходимость указывать в команде в явном виде адрес следующей команды.

В трехадресной команде (рис. 2.2,в) первый и второй адреса указывают ячейки памяти, в которых расположены операнды, а третий определяет ячей­ку, в которую помещается результат операции.

Можно условиться, что результат операции всегда помещается на место одного из операндов, например первого. Получим двухадресную команду (рис. 2.2,г), т.е. для результата используется подразумеваемый адрес.

В одноадресной команде (рис. 2.2д) подразумеваемые адреса имеют уже и результат операции и один из операндов. Один из операндов указывается адресом в команде, в качестве второго используется содержимое регистра процессора, называемого в этом случае регистром результата или аккумуля­тором (Akk). Результат операции записывается в тот же регистр:

Akk:=Аkk*ОП[А1].

Наконец, в некоторых случаях возможно использование безадресных команд (рис. 2.2,е), когда подразумеваются адреса обоих операндов и резуль­тата операции, например, при работе со стековой памятью.

С точки зрения программиста, наиболее естественны и удобны трехад­ресные команды. Однако из-за необходимости иметь большее число разрядов для представления адресов основной памяти и кода операции длина трехад­ресной команды становится недопустимо большой, и ее не удается размес­тить в машинном слове. Следует отметить, что очень часто в качестве опе­рандов используются результаты предыдущих операций, хранимые в регист­рах машины. По указанным причинам в современных ЭВМ применяют трех­адресные команды для адресации регистров.

Способ расширения кодов операции

В машинах с коротким словом практически невозможно в одном форма­те команды, т.е. при фиксированном назначении ее полей, кодировать боль­шое число различных операций и одновременно иметь гибкую форму адре­сации операндов. Это противоречие в машинах с коротким словом преодоле­вается расширением кодов операций в команде. Для задания небольшой группы основных операций (арифметических и др.) используется короткий код операции, а получаемая при этом сравнительно большая адресная часть команды позволяет реализовать гибкую, например двухадресную с многими модификациями, адресацию. Для задания других операций используются бо­лее длинные (расширяемые) коды операций, при этом сокращаемая адресная часть оставляет возможность лишь для более простой, например одноадрес­ной адресации операндов. В пределе расширяемый код операции занимает весь формат команды (безадресная команда).

Обычно в ЭВМ используется несколько структур и форматов команд разной длины.

Приведенные на рис. 2.2. структуры команд достаточно схематичны. В действительности адресные поля команд большей частью содержат не сами адреса, а только информацию, позволяющую определить действительные (исполнительные) адреса операндов в соответствии с используемыми в ко­мандах способами адресации.

Все права защищены. Материалы этого сайта могут быть использованы только со ссылкой на данный сайт

Машинная команда представляет собой код, определяющий операцию вычислительной машины и данные, участвующие в операции. Команда должна содержать в явной или неявной форме информацию об адресе результата операции, и об адресе следующей команды.

Машинная операция – это действия машины по преобразованию информации, выполняемые под воздействием одной команды.

Программа – последовательность команд, отображающих все действия, необходимые для решения задачи по некоторому алгоритму.

Машинный такт – период тактовой частоты работы процессора.
Машинный цикл­­ –­ количество машинных тактов, требуемых для выполнения одной команды.

По характеру выполняемых операций различают следующие основные группы команд:

  • арифметические операции над числами с фиксированной или плавающей точкой;
  • команды двоично-десятичной арифметики;
  • логические (поразрядные) операции;
  • пересылка операндов;
  • операции ввода-вывода;
  • передача управления;
  • управление работой центрального процессора.

Машинная команда состоит из операционной и адресной частей. Эти части могут состоять из нескольких полей. В общем виде машинная команда имеет следующую структуру:


Операционная часть содержит код, задающий вид операции (сложение, умножение, передача и т.д.).
Адресная часть содержит информацию об адресах операндов, результата операции и следующей команды.
Структура команды определяется составом, назначением и расположением полей в команде.
Формат команды – это структура команды с разметкой номеров разрядов, определяющих границы отдельных полей команды.

Возможные структуры машинных команд


содержит наиболее полную информацию о выполняемой операции, включает поле кода операции и четыре адреса для указания ячеек памяти двух операндов, ячейки результата операции, и ячейки, содержащей адрес следующей команды. Такой порядок выборки команд называется принудительным . Он использовался в первых моделях вычислительных машин, имеющих небольшое число команд и очень незначительный объем ОП, поскольку длина такой команды зависит от разрядности адресов операндов и результата.


используется в вычислительных машинах, построенных так, что после выполнения команды по адресу K (команда занимает L ячеек памяти) выполняется команда по адресу K+L. Такой порядок выборки команд называется естественным . Он нарушается только специальными командами передачи управления. При естественном порядке выборки адрес следующей команды формируется в устройстве, называемом счетчик адреса команд. В этом случае команда становится трехадресной.


используется в вычислительных машинах, построенных так, что результат операции будет всегда помещаться в фиксированный регистр процессора, например на место первого операнда. В этом случае адрес результата может явно не указываться.


подразумеваемые адреса имеют результат операции и один из операндов. При этом один из операндов и результат операции размещаются в одном фиксированном регистре. Выделенный для этой цели внутренний регистр процессора получил название аккумулятор . Адрес другого операнда указывается в команде.

Фиксирует адреса обоих операндов и результата операции, например при работе со стековой памятью.

Обычно в вычислительной машине используется несколько форматов команд разной длины (чаще всего безадресные, одноадресные и двухадресные).

В команде, как правило, содержатся не сами операнды, а информация объект адресах ячеек памяти или регистрах, в которых они находятся. Код команды можно представить состоящим из нескольких полей, каждое из которых имеет свое функциональное назначение.

В общем случае команда состоит из:

¨ операционной части (содержит код операции);

¨ адресной части (содержит адресную информацию о местонахождении обрабатываемых данных и месте хранения результатов).

В свою очередь, эти части, что особенно характерно для адресной части, могут состоять из нескольких полей.

Структура команды определяется составом, назначением и расположением полей в коде.

Форматом команды называется заранее оговоренная структура полей ее кода с разметкой номеров разрядов (бит), определяющих границы отдельных полей команды, или с указанием числа разрядов (бит) в определенных полях, позволяющая ЭВМ распознавать составные части кода.

Пример формата команды процессора i486.

mod r/m - спецификатор режима адресации;

r/m - регистр памяти;

SS - масштабный множитель для режима масштабирования индексной адресации;

КОП - код операции;

index - определяет индексный регистр;

base - определяет базовый регистр.

Важной и сложной проблемой при проектировании ЭВМ является выбор структуры и форматов команды, т.е. ее длины, назначения и размерности отдельных ее полей. Естественно стремление разместить в команде в возможно более полной форме информацию о предписываемой командой операции. Однако в условиях, когда в современных ЭВМ значительно возросло число выполняемых различных операций и соответственно команд (в компьютерах с CISC-архитектурой более 200 команд) и значительно увеличилась емкость адресуемой основной памяти (32, 64 Мб), это приводит к недопустимо большой длине формата команды.

Вместе с тем, для упрощения аппаратуры и повышения быстродействия ЭВМ длина формата команды должна быть по возможности короче, укладываться в машинное слово или полуслово. Решение проблемы выбора формата команды значительно усложняется в микропроцессорах, работающих с коротким словом.

Проследим изменения классических структур команд.

Чтобы команда содержала в явном виде всю необходимую информацию о задаваемой операции, она должна, как это показано на рис. 3.1 (б), содержать следующую информацию: А1, А2 - адреса операндов, А3 - адрес результата, А4 - адрес следующей команды (принудительная адресация команд).

Рис. 3.1. Структуры команд: а) обобщенная, б) четырехадресная, в) трехадресная, г) двухадресная, д) одноадресная, е)безадресная

Такая структура приводит к большей длине команды и неприемлема для прямой адресации операндов основной памяти. В компьютерах с RISC-архитектурой четырехадресные команды используются для адресации операндов, хранящихся в регистровой памяти процессора.


Можно установить, как это принято для большинства машин, что после выполнения данной команды, расположенной по адресу К (и занимающей L ячеек), выполняется команда из (K+L)-ой ячейки. Такой порядок выборки команды называется естественным. Он нарушается только специальными командами (передачи управления). В таком случае отпадает необходимость указывать в команде в явном виде адрес следующей команды.

В трехадресной команде (рис. 3.1, в) первый и второй адреса указывают ячейки памяти, в которых расположены операнды, а третий определяет ячейку, в которую помещается результат операции.

Можно условиться, что результат операции всегда помещается на место одного из операндов, например первого. Получим двухадресную команду (рис. 3.1, г), т.е. для результата используется подразумеваемый адрес.

В одноадресной команде (рис. 3.1, д) подразумеваемые адреса имеют уже и результат операции и один из операндов. Один из операндов указывается адресом в команде, в качестве второго используется содержимое регистра процессора, называемого в этом случае регистром результата или аккумулятором. Результат операции записывается в тот же регистр.

Наконец, в некоторых случаях возможно использование безадресных команд (рис. 3.1, е), когда подразумеваются адреса обоих операндов и результата операции, например, при работе со стековой памятью.

С точки зрения программиста, наиболее естественны и удобны трехадресные команды. Обычно в ЭВМ используется несколько структур и форматов команд разной длины. Приведенные на рис. 3.1. структуры команд достаточно схематичны. В действительности адресные поля команд большей частью содержат не сами адреса, а только информацию, позволяющую определить действительные (исполнительные) адреса операндов в соответствии с используемыми в командах способами адресации.

Лекция 11 ОСНОВНЫЕ КОМАНДЫ ЭВМ Классификация команд по различным признакам Структура команд ЭВМ Команды передачи данных Команды обработки данных Команды передачи управления Команды для работы с подпрограммами. Стеки. Прочие команды ЭВМ.

Система команд ЭВМ Все разнообразие решаемых на ЭВМ задач реализуется с помощью небольшого набора очень простых команд. Система команд у типичной ЭВМ включает в себя всего 60 -150 базовых команд. Все команды в основном служат для выполнения очень простых действий, таких, как прочитать, запомнить, сложить, сдвинуть, сравнить и т. д. Интеллектуальность ЭВМ достигается за счет того, что ЭВМ способна выполнять программы, состоящие из большого числа таких простых действий с огромной, не достижимой для человека скоростью. При описании системы команд ЭВМ обычно принято классифицировать команды по следующим признакам.

Классификация команд ЭВМ По функциональному назначению Команды передачи данных Команды обработки данных Команды передачи управления Дополнительные (прочие) По количеству адресов Нульадресные или безадресные С одним адресом С двумя адресами С тремя адресами По способу кодирования операции По длине С фиксированной длиной кода операции С переменной длиной кода операции По способу адресации Один байт (слово) Два байта (слова) Три байта (слова)

Код операции а 1 а 2 а 3 - Трехадресная команда а 1, а 2 – адреса ячеек (регистров), где находятся числа, участвующие в операции (операнды) а 3 – адрес ячейки оперативной памяти, куда нужно поместить результат Код операции а 1 а 2 - Двухадресная команда Результат записывается в ячейку а 2 Код операции а 1 - Одноадресная команда а 1 – адрес ячейки, где хранится число участвующее в операции или адрес ячейки, где записывается результат Код операции - Нуль адресная команда Все операнды в регистре ЦП

Команды передачи данных Данная группа команд включает в себя подгруппы команд передачи кодов между регистрами внутри процессора, из регистров процессора в память, из памяти в регистры процессора, из одних ячеек памяти в другие и передачи данных между процессором и портами внешних устройств. Отдельную подгруппу составляют команды работы со стеком. Они позволяют включить данные в стек для временного хранения и извлекать данные из стека при необходимости их использования.

Команды обработки данных Данную группу команд с точки зрения выполняемых над данными операций можно подразделить на арифметические (сложить, вычесть, умножить, сравнить), логические (операции И, ИЛИ, НЕ и т. д.) и команды сдвига. Команды этого типа могут иметь один или два операнда. Операнды могут храниться к регистрах центрального процессора, в памяти или в самой команде.

Результат операции формируется в регистре-приемнике или в специализированном регистреаккумуляторе. Команды данной группы формируют также признаки результатов, устанавливаемые в регистре флагов процессора: перенос из старшего разряда, переполнение, нулевой результат и др.

Подробнее о команде сравнения Обычно для сравнения двух чисел процессор выполняет операцию вычитания. По результату вычитания устанавливаются флаги во флаговом регистре. Очевидно, что если сравниваемые числа равны, результат вычитания будет нулевым и в регистре установится флаг нулевого результата. Если первое из сравниваемых чисел больше - результат вычитания будет отрицательным и установится флаг отрицательного результата. Результат вычитания не сохраняется в памяти, поскольку по состоянию флагового регистра можно судить о результатах сравнения чисел.

Команды передачи управления Они имеют важное значение, так как используются для изменения естественного порядка следования команд и организации циклических участков в программах. Простейшей командой передачи управления является команда безусловного перехода JMP , которая загружает адрес перехода, указанный в команде, в программный счетчик. Команды условного перехода проверяют указанное в команде условие и модифицируют программный счетчик, если условие истинно.

Src="https://present5.com/presentation/3/-29919247_13569617.pdf-img/-29919247_13569617.pdf-11.jpg" alt="Пример команды условного перехода Оператор IF (A>B) then go to L некоторого языка"> Пример команды условного перехода Оператор IF (A>B) then go to L некоторого языка высокого уровня может быть реализован двумя командами ЭВМ: СРАВНИТЬ А и В ПЕРЕЙТИ ЕСЛИ БОЛЬШЕ К АДРЕСУ L Если А>В, то результат вычитания будет положителен и соответственно флаг знака во флаговом регистре не установится. Вторая команда (условный переход) проверяет состояние флага знака и, если он не установлен, модифицирует программный счетчик так, чтобы его значение указывало на адрес L.

Организация подпрограмм В программировании широко используется такой прием, как организация подпрограмм. Подпрограмма описывается один раз, а вызываться может из различных мест программы неоднократно. Подпрограмма в процессе своей работы может вызвать другую. После того как подпрограмма закончила свою работу, управление должно быть передано на команду, следующую в памяти сразу за командой обращения к этой подпрограмме. Адрес команды, на которую управление передается после окончания работы подпрограммы, называется адресом возврата.

Где надо хранить адрес возврата? Для того, чтобы начать выполнять подпрограмму, в программный счетчик необходимо загрузить адрес первой команды подпрограммы. Для осуществления возврата из подпрограммы необходимо запомнить в каком-то месте адрес возврата. Можно, например, сохранить адрес возврата в одном из регистров процессора. Такой способ сохранения адреса возврата очень прост и легко реализуется. Однако часто встречаются подпрограммы, которые вызывают другие подпрограммы. Пусть основная программа вызвала подпрограмму А. Она в свою очередь обратилась к подпрограмме В. Если адрес возврата для подпрограммы А хранится в регистре процессора, то куда размещать адрес возврата при вызове подпрограммы В?

Обобщенный алгоритм функционирования фон – неймановской ЭВМ Инициализация Выборка команды Увеличение программного счетчика Дешифрация и выполнение команды Нет Команда «Остановка процессора» Да Инициализация

Понятие стека Большинство ЭВМ используют аппаратно поддерживаемую структуру данных, называемую стеком. Стек - это структура данных, организованная по принципу: последним вошел - первым вышел, т. е. последние записанные в стек данные извлекаются из него первыми. В переводе с англ. stack - стопка. Аналогом стека может служить стопка тарелок. Положить тарелку в стопку можно только сверху, извлечь без проблем опятьтаки только верхнюю тарелку.

Организация стека 1. В ЭВМ для организации стека выделяется область оперативной памяти, а для ее адресации и доступа к стеку используется регистр- указатель стека. 2. Регистр -указатель стека хранит адрес ячейки памяти, содержащей последнее помещенное в стек значение. 3. При записи числа в стек указатель стека модифицируется так, чтобы он указывал на следующую свободную ячейку, и в нее записываются данные.

4. При извлечении из стека данные считываются из той ячейки ОП, на которую показывает указатель, затем указатель стека модифицируется так, чтобы указывать на предпоследнее сохраненное в стеке значение. 5. Обычно стеки растут в сторону уменьшения адресов, т. е. при записи числа указатель стека уменьшается, при извлечении числа из стека - увеличивается.

Команды для работы с подпрограммами. Стеки Стек = ячейки ОП + регистр - указатель стека (АЛУ ЦП) Регистр - указатель стека хранит адрес ячейки ОП, в которой содержится последний помещенный в стек адрес возврата Структура данных стека на примере А) Начальное состояние: стек пустой Ячейки ОП Адреса ячеек 1000 Указатель стека 998 996 Б) В стек записаны два адреса возврата: 1234 и 5678 1234 1000 Указатель стека 5678 998 Запись адресов возврата 996 В) Из стека извлечен один адрес, последний Указатель стека 1234 1000 998 996 Считывание 1000

Src="https://сайт/presentation/3/-29919247_13569617.pdf-img/-29919247_13569617.pdf-19.jpg" alt="Работа команды вызова подпрограмм САLL 1. Когда процессор считывает из памяти команду САLL"> Работа команды вызова подпрограмм САLL 1. Когда процессор считывает из памяти команду САLL , программный счетчик увеличивается и показывает на команду, следующую за командой САLL. То есть программный счетчик теперь содержит адрес возврата, с которого должно продолжиться выполнение основной программы после окончания работы подпрограммы. 2. При выполнении обращения к подпрограмме процессор сохраняет содержимое программного счетчика в стеке, точнее, в его ячейках ОП. 3. Далее в программный счетчик загружается адрес команды, с которого начинается подпрограмма. Процессор приступает к выполнению подпрограммы.

Работа команды возврата RETURN 1. Для возврата из подпрограммы в основную программу служат команды возврата RETURN. 2. Команда возврата из подпрограммы извлекает из стека сохраненный в нем адрес возврата помещают его в программный счетчик. 3. Процессор приступает к выполнению основной программы. 4. Если имели место несколько вложенных вызовов подпрограмм, то возврат произойдет по адресу возврата, сохраненному последнего вызова, (так как для хранения адресов возврата используется стек и последний сохраненный адрес возврата будет вызван первым).

Прочие команды ЭВМ В ЭВМ могут быть дополнительные (специальные) команды. К их числу можно отнести команды остановки центрального процессора, сброса внешних устройств, установки или сброса отдельных признаков и т. д. Итак, на этой лекции были кратко рассмотрены базовые команды, используемые в типичных ЭВМ, и действия реализуемые этими командами.