Двухфазный генератор переменного тока. Трехфазный генератор переменного тока

Автомобильный генератор - один из важнейших агрегатов в машине. Его функция заключается в том, чтобы вырабатывать и поставлять электроэнергию во все узлы, нуждающиеся в постоянном потреблении тока. Кроме того, он обеспечивает заряд аккумулятора во время старта автомобиля и в процессе рабаты двигателя.

Далее рассмотрим, из чего состоит электрогенератор в современных машинах, каков принцип работы и насколько важно содержать его в полной исправности. А также разберем какие есть разновидности приборов, применяемых в современных автомобилях.

Основные функции генератора переменного тока

Работа прибора заключается в преобразовании механической энергии, вырабатываемой коленвалом в электрический ток. В результате обеспечивается питание всех приборов, нуждающихся в электроэнергии. Электрическая энергия накапливается в аккумуляторе автомобиля. В обычном режиме именно он обеспечивает питание нуждающихся в токе систем.

Но при запуске машины именно стартер является основным потребителем энергии. Сила тока достигает сотен ампер, а напряжение в сети резко падает. Именно генератор в этот момент становится основным источником тока. Аккумуляторная батарея вырабатывает нестабильный ток, который не может обеспечить постоянное напряжение в электросети автомобиля.

Генератор тока является своего рода подстраховкой, так как именно он обеспечивает выработку и подачу электроэнергии во время резких скачков напряжения. Это может быть не только запуск двигателя, но и включение фар, переключение передач, а также начало работы дополнительных систем.

Кроме того, прибор обеспечивает заряд аккумуляторной батареи, которая так же важна для полноценной работы автомобиля.

Принцип работы

Существует два вида генераторов: постоянного и переменного тока. На большинстве современных автомобилей устанавливается второй тип генераторов. Они характерны тем, что магнитопровод и проводник у них неподвижны. Вращается только постоянный магнит, при вращении которого образуется ток. Это происходит потому, что контур катушки пронизывается переменным по величине и направлению магнитным потоком. В результате происходит равномерное нарастание и убывание энергии.

Таким образом, при прохождении мимо полюсов магнита наконечника магнитопровода образуется переменный по своей величине и направлению ток. В катушке он тоже меняется. Именно поэтому ток называется переменным. Конструкция агрегата позволяет ему вырабатывать достаточное количество электроэнергии даже при относительно медленном вращении, так как он имеет большое количество катушек и роторов, а вместо обычного магнита в нем установлен электрический.

Для всех моделей принцип работы генераторов практически одинаковый. Меняться могут лишь некоторые составляющие прибора, обеспечивающие выработку большего количества электроэнергии.

Как работает генератор переменного тока

Для тех, кто хотя бы немного разбирается в принципах выработки и распределения электроэнергии все предельно просто. В автомобиле имеется две электрические цепи: первичная и вторичная.

Между первичной и вторичной цепью стоит регулятор напряжения. Он вычисляет уровень напряжения во вторичной цепи, а в зависимости от этого задает параметры для первичной. Без регулятора напряжения в автомобиле мог бы контролироваться уровень напряжения и количество вырабатываемой электроэнергии.

Если напряжение в сети резко падает, на его показатели реагирует регулятор, и ток в цепи обмотки возбуждения повышается. В результате происходит увеличение магнитного поля, внутри электроприбора вырабатывается большее количество электроэнергии. Напряжение внутри механизма будет повышаться до тех пор, пока его рост не остановит регулятор.

Когда уровень тока во всей сети выравнивается, регулятор снова дает сигнал об увеличении напряжения в генераторе до нужного уровня. Таким образом, работа генератора напрямую зависит от количества потребляемой всеми системами автомобиля электроэнергии. А контролирует количество вырабатываемой энергии регулятор напряжения.

Важно! Работа генератора не зависит от оборотов двигателя. Если возникают сбои в электросети автомобиля, это связано либо с проблемами в самом генераторе, либо с неисправностью регулятора напряжения, но никак не с проблемами в работе двигателя. Устройство генератора позволяет вырабатывать нужное количество электроэнергии даже при небольших оборотах агрегата.

Ниже можно просмотреть видео с доступным пояснением схемы работы генератора переменного тока:

Как приводится в действие генератор

Генератор напряжения в автомобиле выполняет функцию преобразователя механической энергии в электрическую. Механическая энергия продуцируется от двигателя автомобиля. Устройство генератора выполнено таким образом, что шкив коленчатого вала передает движение к шкиву генератора. Между ними имеется ременное крепление, которое и обеспечивает эту передачу.

Все современные автомобили оснащены поликлиновыми ремнями, которые имеют хорошую гибкость и позволяют устанавливать на генераторах шкивы малого диаметра. А чем меньше диаметр этого узла, тем больше агрегат может вырабатывать энергии. Такая взаимосвязь обеспечивает высокие передаточные отношения, которые отличают высокооборотные генератора.

Из этого можно сделать вывод, что применение новых материалов и технологий в производстве генераторов постоянного и переменного тока позволяют увеличивать их производительность. Это весьма актуально для высокотехнологичных автомобилей с их повышенным потреблением электроэнергии.

Устройство генератора

Устройство генератора не слишком изменилось ос времен изобретения первых электрических механизмов постоянного и переменного тока, применяемых для продуцирования электроэнергии в автомобилях. Этот агрегат имеет следующее устройство:

  • корпус;
  • две крышки с отверстиями для вентиляции. Алюминиевые крышки стягиваются между собой тремя или четырьмя болтами;
  • ротор, вращающийся в двух подшипниках и приводящийся в движение при помощи шкива;
  • ток на обмотку электромагнита подается двумя медными кольцами и графитовыми щетками;
  • они, в свою очередь, соединяются с реле-регулятором, который и обеспечивает контроль за уровнем выработки электроэнергии внутри агрегата. В зависимости от модификации, реле может быть либо встроено в корпус, либо выносится за его пределы.

Все современные приборы оснащены вентиляторами охлаждения, которые не дают устройству перегреваться. Генераторы крепятся непосредственно к передней части двигателя при помощи специальных кронштейнов.

Статор генератора состоит из сердечника, обмотки, пазового клина, паза и вывода для соединения с выпрямителями. Ротор состоит из полюсной системы. Эти компоненты находятся в корпусе, а их работа и взаимодействие является основой для выработки электроэнергии внутри устройства.

Щеточный узел помещает в себе щетки, или скользящие контакты. Они могут быть многографитными или электрографитными. Щеточные узлы передают постоянный ток на вращающийся якорь, выступающий в роли постоянного магнита. Но эти же щетки являются слабым звеном данной конструкции, так как требуют постоянного обслуживания, чистки и замены изношенных деталей.

Устройство автомобильного бесщеточного генератора

Бесщеточный тип устройства на сегодня является самым распространенным, так как он является наиболее надежным и не требует постоянного обслуживания. Как и любой другой прибор, он состоит из двух узлов:


В отличие от щеточных механизмов, здесь применяется компаундная регулировка выдаваемого напряжения. Оно реализуется за счет того, что оси обмоток смещены на 90 градусов. В результате при увеличении нагрузки магнитное поле ротора смещается в сторону основной обмотки, и вырабатываемая в ней ЭДС повышается. Напряжение, в свою очередь, стабилизируется.

Такое устройство механизма имеет следующие преимущества:

  • при работе устройства не образуется угольная пыль, являющаяся основной проблемой для щеточных генераторов;
  • после определенного срока эксплуатации не требуется замена щеток;
  • уменьшенное количество механических конструкций значительно повышает надежность прибора и минимизирует затраты на его обслуживание;
  • прибору не страшны неблагоприятные погодные условия;
  • такие приборы имеют простую конструкцию, а значит и стоят они дешевле.

Бесщеточные генераторы достаточно популярны, несмотря на то что они однофазные и имеют невысокую КПД. Однако данный их недостаток устраняется применением систем с электронным регулированием и независимым возбуждением.

Как устроен генератор постоянного тока

Прибор постоянного тока имеет схожую конструкцию с генератором переменного тока. Основные его части - это якорь в форме цилиндра с обмоткой и электромагниты, создающие напряжение в приборе.

Они делятся на два типа: самовозбуждающиеся и с применением независимого включения, такие приборы тоже могут быть щеточными и бесщеточными.

Из-за того, что генераторы постоянного тока нуждаются в постоянном источнике энергии, область их применения достаточно узконаправленная. Часто они применяются для питания общественного электротранспорта. Данный тип приборов используется в дизельных генераторах.

Содержание:

Когда люди присмотрелись к возможностям электричества, сразу начали придумывать, как бы серьезно поставить на службу эту интересную энергию. И появилась целая гамма приборов, устройств, установок, способных создавать на двух металлических концах электрическое напряжение. К концам сразу же прикрутили два болтика и начали подвешивать к ним все, что вызывало теперь массу интересных эффектов. Устройства эти в целом назвали источниками электроэнергии, или генераторами. А то, что к ним подключалось - электрической цепью. А по мере роста цепей и занятия ими все более значимого и постоянного места в человеческой жизни, их стали называть уже электрическими сетями.

Именно генераторы создали всю нашу электроиндустрию. Чем принцип работы генератора переменного тока отличается от принципов работы первых источников? Некой надежностью и постоянством, происходящими от надежности и всеобщей доступности той энергии, из которой они вырабатывают электричество. Это механическое движение. А у нас мир весь полон движения. И вполне естественно было заставить роторы крутиться, а движение для этого брать из чего-то еще. Из тепла. Сгорает топливо, ротор крутится - генератор тока работает.

Первоначальный источник же был продуктом первых экспериментов. Химия (аккумуляторы), электризация (электрофорные машины) - все это как-то слабо. Потому что непропорционально дорого, сравнительно с количеством энергии, которое потребовали сети. Сначала осветительные, а потом почти сразу трамвайные. Вот трамвай и толкнул генераторы тока вперед в развитии.

Трамвайная линия - это то, где электроэнергия сама производит движение. Плюсом такого подхода оказалась очень удобная подача такого «топлива» на большие довольно расстояния. И очень органично вписалась в затраты по изготовлению самой трамвайной линии. Когда кладут железные пути, что уж там не проложить вдоль них еще и проволоку, подводящую ток к трамваям, которые могут теперь находиться на линии в любом месте и с одинаковой легкостью получать эту энергию.

Преобразование оказалось симметричным: устройство генератора переменного тока практически такое же, как и у двигателя. Только у генератора назначение - вырабатывать электричество, вращая ротор, а у другого электроэнергия крутит почти такой же ротор, а уже он - колеса трамвая.

О такой передаче энергии механики прошлых веков только мечтали. Ведь когда-то с помощью водяного колеса вращали валы обрабатывающих станков в целых цехах. А энергию механическую передавали тоже механически: с помощью валов, шкивов, ремней, шестеренок… Тут же всего-то - два проводочка. А в случае с трамваями вообще один. Второй - сами рельсы.

Ток переменный и ток постоянный

Сначала открыли электрический ток, когда увидели, что он, себя проявляя, действует. Потом только обнаружили, что ток бывает постоянный, но может быть и переменным.

Собственно говоря, генерация тока всегда и происходит от изменения магнитного поля, проходящего через обмотку. И напряжение, которое при этом возникает, просто обязано быть переменным. Потому что технически просто немыслимо заставить магнитное поле изменяться строго равномерно. Источники тока, полученные другим путем, основывались на стационарных процессах (или квазистационарных - учитывая разряд аккумуляторов), поэтому они и давали исключительно постоянный ток. Когда изобрели телеграф - наверное, первое электрическое изобретение, толкнувшее к созданию масштабных электрических линий, - этот самый ток в них был постоянным, хотя и прерывистым. Постоянный ток не очень высокого напряжения дает в передаче на дальние расстояния огромные потери от сопротивления в проводниках. С этим столкнулся уже Самюэль Морзе, когда протягивал свою первую телеграфную линию в 1844 году от Балтимора до Вашингтона. Они с другом сумели с этим справиться, используя «активное усиление» сигнала с помощью реле.

Трамвайные линии, как известно, поначалу унаследовали эту традицию - питаться постоянным электрическим током, хотя конструкция из магнитов и вращающихся в их поле проводников, будучи использована в качестве генератора, легче и проще производит именно переменный ток.

Назначение генератора - выработка напряжения, постоянного и переменного, отсюда его устройство и принцип работы.

А типы вырабатываемого напряжения и определили строение и принцип действия генераторов.

Поэтому и различаются генераторы типами - генератор постоянного тока и генератор переменного тока.

В генераторах постоянного тока этого постоянства достигают конструкционными ухищрениями: путем создания определенной конфигурации магнитного поля, путем увеличения количества якорных рамок в роторе, в которых наводится разность потенциалов и снятие его с них с помощью многоконтактного коллектора, путем организации особых режимов тока возбуждения на специальных обмотках возбуждения, установленных на магнитах статора, и т.д.

Но, оказалось, проще добиться того же эффекта другим путем: индукционный генератор переменного тока напряжение вырабатывает, а потом оно «выпрямляется» обычной схемой диодного выпрямителя. Что и делает, например, генератор автомобиля.

Принцип работы устройства

Генератор переменного тока - это механико-индукционная машина, создающая переменное электрическое напряжение на своих выходных контактах в ответ на вращение своей подвижной части посторонней силой.

Подвижная часть генератора (или альтернатора) называется ротором, неподвижная - статором.

Две части генератора производят следующее: одна из них создает магнитное поле, а вторая часть содержит проводники, расположенные так, что при изменении относительно них этого магнитного поля (назовем его генерирующим), на их противоположных концах возникает разность потенциалов. Она снимается и переправляется с этих проводников на выходные контакты.

Виды генераторов переменного тока

Отсюда возможны два варианта конструкций генератора переменного тока, в которых:

  • генерирующее магнитное поле создается в статоре и неподвижно;
  • генерирующее магнитное поле создается в роторе и вращается вместе с ним.

В любом случае напряжение, возникающее в результате генерации, нужно снимать не с той части генератора, где создается магнитное поле, а с противоположной.

Первоначально - начиная с опытов по вращению рамки из проводника в неподвижном магнитном поле - ротор и служил для наведения в его обмотках (или рамках) электрической индукции, порождавшей движение электронов к разным концам этих проводников, отчего и возникало напряжение.

Видимо, это связано с тем, что магниты выбирали побольше и потяжелее, дабы создавать сильное поле с большим градиентом, а рамочки с током были совсем легкие. Но теперь и ротор, и статор - это точно пригнанные друг к другу массивные части. Напряжение с вращающегося ротора (или якоря) необходимо снять с помощью специального механизма и отправить на неподвижные выходные контакты. Такой механизм называется коллектором (от лат. «сборщик»), в нем неподвижные подпружиненные щетки, «протянутые» от статора, плотно прижимаются к вращающимся вместе с ротором контактам.

Быть может, конструктивно это самая узкая часть электродвигателей и генераторов. Она требует специального исполнения, при вращении детали ее стираются, от плохих контактов - при стертых пластинах контактов, или промежутков между ними, или стертых щетках (которые изготовляются обычно из графита - а от него токопроводящая пыль) - начинается искрение при вращении, и это никому не нравится.

Поэтому самым удобным вариантом генераторов переменного тока является второй. Это когда магнитное поле вращается ротором, а напряжение возникает в неподвижном статоре. И его не надо снимать никаким замысловатым образом.

Однофазные и многофазные

Принцип работы

Магнитное поле можно гонять (изменять, вращать) над одной системой проводников (имеющих два полюса) или над несколькими.

Из рисунка понятно, как устроен простейший генератор переменного тока. Из чего состоит генератор? Основные части - ротор и статор. Мы видим, что ротор с установленным в нем магнитом N–S вращается. При этом полюса магнита, то N, то S, попеременно совсем близко от катушек с обмотками. Обмотки последовательно соединяются друг с другом и потом с выходными контактами. Направление и поток магнитного поля, проходящий через обмотки, при вращении изменяется. От чего и возникает переменное напряжение на выходных контактах с частотой f вращения ротора. Происходит генерирование напряжения, а при подключении к контактам нагрузки возникает переменный ток частоты f.

Схема эта - наипростейшая. Она только чуть сложнее, чем те рамочки, которые крутили когда-то в поле двух магнитов. Только теперь, наоборот, магнит, установленный на роторе, вращается, а неподвижные катушки дают напряжение.

Напряжение получается синусоидальным, достигает максимума и минимума, когда около катушек проходят полюса магнита - около них поток магнитного поля наиболее плотен, и поэтому происходит самое быстрое изменение поля. И на контактах в это время будет наведено максимальное по величине напряжение U, или - U . Когда же ротор повернется так, что магнит будет проходить горизонтальное положение, выходное напряжение будет пересекать нулевое значение.

Трехфазный генератор переменного тока

Однако мы видим, что в этой простой электрической машине еще очень много свободного места. Что ж, можно по периметру статора поставить не одну пару, а несколько пар катушек. Но придется тогда от каждой пары катушек отводить отдельные контакты для напряжений, чтобы напряжения разных пар не гасили друг друга. Получится как бы несколько генераторов в одном, каждый из них будет давать синусоидальное напряжение, но так как катушки повернуты относительно друг друга, и синусоиды будут сдвинуты ровно на такой угол, на какой сдвинуты пары катушек относительно нашей первоначальной.

Катушки распределены по периметру статора равномерно, то есть друг от друга отстоят на угол 120⁰. Точно такой сдвиг фаз получается и у напряжений. Напряжение U1 с нулевым сдвигом (это наша первая пара катушек), напряжение U2 - 120⁰ и напряжение U3 - 240⁰.

Такое напряжение называется трехфазным. Его возможно передавать с помощью единой системы проводов - три провода по одной на каждую фазу, а ноль всех трех объединяется в один. Это можно сделать двумя способами: соединив обмотки катушек по типу «треугольник» или «звезда».

Можно придумать и другие схемы генерации переменного напряжения, например, установив не три пары катушек, а только две. Тогда разница фаз между ними получится в 90⁰.

Применение нашла именно трехфазная система генерации.

При потреблении трехфазного напряжения часто выделяют отдельные фазы и раздают их разным потребителям. Когда потребителей много, то случайным образом «раздавать» фазы можно - в среднем обычно получается одинаковая нагрузка на все фазы. Но это должно отслеживаться. Потому что если потребление по разным фазам сильно отличается или оно очень неравномерно себя ведет во времени, наступает такое явление, как «перекос фаз». Напряжение по разным фазам начинает отличаться. А это ведет к очень многим плохим последствиям: перерасходу электроэнергии, выходу из строя трансформаторов, электроприборов, двигателей. На электростанции - к падению КПД генераторов (они начнут как бы «хромать») и даже выходу из строя генераторов электроэнергии. Чтобы минимизировать такого рода ущерб, нулевой провод обычно хорошо заземляют, но и следить должны энергетики за таким неприятным явлением.

Возбуждение генератора

Реальный генератор отличается от тут нарисованного еще и тем, что в качестве источника магнитного поля использовать постоянные магниты - занятие бесполезное. Магнитное поле в промышленной установке должно быть строго определенной и строго выдерживаемой напряженности. А как добиться строго одинаковой напряженности магнитов на разных фазах в трехфазном генераторе переменного тока? Иначе и напряжения на них будут разные, и будут фазы «вечно хромающими». Поэтому на роторе вместо магнитов используют электромагниты с сердечниками. К ним подводится постоянное напряжение, и они во время работы генератора возбуждают электромагнитное поле строго заданной интенсивности. Постоянное напряжение подается от независимого источника - это может быть аккумулятор или другой источник постоянного тока. Тут опять проблема: или взгромоздить на ротор еще и аккумулятор для питания катушек возбуждения, или снова заморачиваться с коллекторами для передачи напряжения возбуждения. Решение можно назвать соломоновым: сделать на одном роторе как бы сразу два генератора, только второй питает током обмотки возбуждения первого. А в статоре, соответственно, добавляются еще электромагниты для возбуждения магнитного поля в этом втором генераторе, ток от которого используется только в самом роторе, следовательно, снаружи никому и не нужен. И не надо городить никаких коллекторов для его съема. Такая конструкция стала называться «бесщеточный синхронный генератор переменного тока».

Синхронным он называется потому, что оба источника - и генератор тока возбуждения, и генератор-устройство, дающее конечный результат - напряжение на выходе, работают одновременно на одном и том же роторе.

С помощью тока возбуждения можно влиять на напряжение, которое дает генератор-устройство: при увеличении тока возбуждения соответственно усиливается и магнитное поле, возбуждаемое ротором, отчего главные обмотки генератора и будут вырабатывать переменное напряжение более высокой амплитуды.

Этим пользуются для регулировки напряжения, так как скорость вращения ротора менять нельзя, иначе изменится и частота, а она задана жестко техническими характеристиками всей нашей сети электроэнергии.

Наша энергосистема вырабатывает напряжение частотой строго 50 Гц, ее и производят генераторы электростанций - все они вращают свои роторы со скоростью, кратной 50 Гц. А конструкция ротора выводит напряжение, изменяющееся 50 раз в секунду.

Однако во многих случаях, где высокая точность частоты вырабатываемой энергии не критична, используют асинхронные генераторы. Они проще и дешевле синхронных, но дают напряжение с большим разбросом параметров. Это неважно там, где оно последующими схемами все равно будет преобразовано в постоянное.

Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.

Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.

Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.

Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.

Базовые принципы

Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.

  • Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
  • Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.

  • Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.
  • Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
  • Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
  • Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
  • Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.

Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.

Переменный ток

Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.

Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.

Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.

Строение генератора переменного тока

Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.

Основные рабочие части и их подключение

Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины, а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

  • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
  • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
  • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.

Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

  • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
  • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

  • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.

  • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
  • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
  • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

Виды генераторов переменного тока

Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.

Трехфазные генераторы

Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.

  • Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
  • Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.
  • Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
  • Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
  • Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
  • Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.
  • Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
  • Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
  • В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
  • Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.

Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.

Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.

Различие по виду

Отличаются генераторы и по виду, которых существует 2:

  • Синхронный генератор переменного тока главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.

  1. Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
  2. На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
  3. Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
  4. К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
  5. Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
  6. К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
  7. Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.

  • Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
  1. Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
  2. Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.

Способы возбуждения обмотки

Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.

Тут можно выделить 4 типа:

  1. Питание на обмотку подается через сторонний источник.
  2. Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
  3. Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу . Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
  4. Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.

Применение генераторов переменного тока на практике

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Генератор на жидком топливе

Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.

Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.

Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.

На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…

На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.

На практике используется несколько видов генераторов. Но каждый из них включает в себя одни и те же составные элементы. К ним относятся магнит, который создает соответствующее поле, и специальная проволочная обмотка, где создается электродвижущая сила (ЭДС). В простейшей модели генератора роль обмотки выполняет рамка, способная вращаться вокруг горизонтальной или вертикальной оси. Амплитуда ЭДС пропорциональна количеству витков, имеющихся на обмотке, и размаху колебаний магнитного потока.

Чтобы получить значительный по силе магнитный поток, в генераторах используют особую систему. Она состоит из пары стальных сердечников. Обмотки, которые создают переменное магнитное поле, помещают в пазы первого из них. Те витки, которые индуцируют ЭДС, укладывают в пазы второго сердечника.

Внутренний сердечник называют ротором. Он вращается вокруг оси вместе с имеющейся на нем обмоткой. Тот сердечник, который остается без движения, выполняет функцию статора. Чтобы сделать поток магнитной индукции наиболее сильным, а потери энергии минимальными, расстояние между статором и ротором стараются сделать как можно меньше.

По какому принципу работает генератор

Электродвижущая сила возникает в обмотках статора сразу после появления электрического поля, для которого характерны вихревые образования. Эти процессы порождаются изменением магнитного потока, которое наблюдается при ускоренном вращении ротора.

Ток от ротора подается в электрическую цепь при помощи контактов, имеющих вид элементов скольжения. Чтобы сделать это было легче, к концам обмотки присоединяют кольца, называемые контактными. К кольцам прижимаются неподвижные щетки, через которые и осуществляется связь между электрической цепью и обмоткой движущегося ротора.

В витках обмотки магнита, где создается магнитное поле, ток имеет сравнительно небольшую силу, если сравнивать его с тем током, который генератор отдает внешней цепи. По этой причине уже конструкторы первых генераторов решили отводить ток от обмоток, расположенных статично, а слабый ток к вращающемуся магниту подавать через контакты, обеспечивающие скольжение. В генераторах малой мощности поле создает магнит постоянного типа, который способен вращаться. Такая конструкция позволяет упростить всю систему и вовсе не использовать кольца и щетки.

Современный промышленный генератор электрического тока представляет собой массивное и громоздкое сооружение, которое состоит из металлических конструкций, изоляторов и медных жил. Размеры устройства могут составлять несколько метров. Но даже для такого солидного сооружения очень важно выдержать точные габариты деталей и зазоры между подвижными частями электрической машины.

Принцип работы генератора автомобиля понять совсем не сложно, если рассмотреть основные узлы этого важного устройства транспортного средства, которое превращает получаемую от мотора машины механическую энергию в электрическую.

Схема автомобильного генератора – из чего состоит генератор автомобиля?

Данный узел автомобиля необходим для зарядки и обеспечения электрооборудования при двигателе ТС необходимым ему электрическим питанием. Как правило, находится генератор в передней части автомобильного двигателя. На сегодняшний день существует два конструктивных варианта исполнения интересующего нас устройства:

  • стандартная;
  • компактная.

И первая и вторая конструкции имеют ряд общих элементов. К таковым относят следующие механизмы:

  • щеточный узел;
  • регулятор напряжения;
  • статор;
  • выпрямительное устройство;
  • корпус;
  • ротор.

Разница же между стандартным и компактным генератором заключается в том, какую конструкцию имеет их корпус, приводной шкив, выпрямительный узел и вентилятор. Кроме того, они имеют разные геометрические размеры, что зависит не только от их устройства, но еще и от фирмы-производителя. При этом работа автомобильного генератора остается неизменной, какой бы вид ему не придали инженеры-конструкторы.

Принцип работы генератора автомобиля – как именно он работает?

Функционирование интересующего нас устройства базируется на явлении электромагнитной индукции. Суть ее в следующем. Когда магнитный поток проходит через медную катушку, на ее выводах образуется напряжение. Оно по своей величине пропорционально скорости, с которой этот самый поток изменяется.

А для того, чтобы магнитный поток смог образоваться, согласно эффекту индукции, следует пропустить электроток через катушку. По сути, если требуется получить электрический переменный ток, достаточно иметь под рукой:

  • катушку (переменное напряжение будет сниматься именно с нее);
  • источник магнитного переменного поля.

Указанным источником в современном транспортном средстве является вращающийся ротор, состоящий из вала, полюсной системы и контактных колец. А вот другой важный элемент – статор – нужен для формирования электротока (переменного). Статор состоит из сердечника, который набирается из стальных пластин, и обмотки.

Принцип работы автомобильного генератора – принципиальная элеткросхема узла

Недостаточно знать, как устроен генератор автомобиля в общем, если вы хотите полностью разобраться с принципом его работы. Надлежит, кроме того, изучить электросхему генераторного узла, которая включает в себя такие компоненты:

  • включатель зажигания;
  • «массу»;
  • щеточный узел;
  • конденсатор, предназначенный для подавления помех;
  • диоды обмотки;
  • плюсовой выход механизма;
  • диоды выпрямителя (силового) – отрицательные и положительные;
  • питание обмотки;
  • регулятор напряжения;
  • обмотки статора;
  • сигнальную лампу (она подает сигнал о неисправности описываемого устройства).

А вот теперь легко понять, как работает автомобильный генератор. При повороте ключа в замке зажигания через контактные кольца и щеточный механизм ток подается на обмотку возбуждения. В ней наводится необходимое поле (магнитное), что приводит в движение ротор, который начинает перемещать