Что такое Flash Memory? Flash-память. Принцип работы

Флэш-память представляет собой тип долговечной памяти для компьютеров, у которой содержимое можно перепрограммировать или удалить электрическим методом. В сравнении с Electrically Erasable Programmable Read Only Memory действия над ней можно выполнять в блоках, которые находятся в разных местах. Флэш-память стоит намного меньше, чем EEPROM, поэтому она и стала доминирующей технологией. В особенности в ситуациях, когда необходимо устойчивое и длительное сохранение данных. Ее применение допускается в самых разнообразных случаях: в цифровых аудиоплеерах, фото- и видеокамерах, мобильных телефонах и смартфонах, где существуют специальные андроид-приложения на карту памяти. Кроме того, используется она и в USB-флешках, традиционно применяемых для сохранения информации и ее передачи между компьютерами. Она получила определенную известность в мире геймеров, где ее часто задействуют в промах для хранения данных по прогрессу игры.

Общее описание

Флэш-память представляет собой такой тип, который способен сохранять информацию на своей плате длительное время, не используя питания. В дополнение можно отметить высочайшую скорость доступа к данным, а также лучшее сопротивление к кинетическому шоку в сравнении с винчестерами. Именно благодаря таким характеристикам она стала настольно популярной для приборов, питающихся от батареек и аккумуляторов. Еще одно неоспоримое преимущество состоит в том, что когда флэш-память сжата в сплошную карту, ее практически невозможно разрушить какими-то стандартными физическими способами, поэтому она выдерживает кипящую воду и высокое давление.

Низкоуровневый доступ к данным

Способ доступа к данным, находящимся во флэш-памяти, сильно отличается от того, что применяется для обычных видов. Низкоуровневый доступ осуществляется посредством драйвера. Обычная RAM сразу же отвечает на призывы чтения информации и ее записи, возвращая результаты таких операций, а устройство флеш-памяти таково, что потребуется время на размышления.

Устройство и принцип работы

На данный момент распространена флэш-память, которая создана на однотранзисторных элементах, имеющих «плавающий» затвор. Благодаря этому удается обеспечить большую плотность хранения данных в сравнении с динамической ОЗУ, для которой требуется пара транзисторов и конденсаторный элемент. На данный момент рынок изобилует разнообразными технологиями построения базовых элементов для такого типа носителей, которые разработаны лидирующими производителями. Отличает их количество слоев, методы записи и стирания информации, а также организация структуры, которая обычно указывается в названии.

На текущий момент существует пара типов микросхем, которые распространены больше всего: NOR и NAND. В обоих подключение запоминающих транзисторов производится к разрядным шинам - параллельно и последовательно соответственно. У первого типа размеры ячеек довольно велики, и имеется возможность для быстрого произвольного доступа, что позволяет выполнять программы прямо из памяти. Второй характеризуется меньшими размерами ячеек, а также быстрым последовательным доступом, что намного удобнее при необходимости построения устройств блочного типа, где будет храниться информация большого объема.

В большинстве портативных устройств твердотельный накопитель использует тип памяти NOR. Однако сейчас все популярнее становятся приспособления с интерфейсом USB. В них применяется память типа NAND. Постепенно она вытесняет первую.

Главная проблема — недолговечность

Первые образцы флешек серийного производства не радовали пользователей большими скоростями. Однако теперь скорость записи и считывания информации находится на таком уровне, что можно просматривать полноформатный фильм либо запускать на компьютере операционную систему. Ряд производителей уже продемонстрировал машины, где винчестер заменен флеш-памятью. Но у этой технологии имеется весьма существенный недостаток, который становится препятствием для замены данным носителем существующих магнитных дисков. Из-за особенностей устройства флеш-памяти она позволяет производить стирание и запись информации ограниченное число циклов, которое является достижимым даже для малых и портативных устройств, не говоря о том, как часто это делается на компьютерах. Если использовать этот тип носителя как твердотельный накопитель на ПК, то очень быстро настанет критическая ситуация.

Связано это с тем, что такой накопитель построен на свойстве полевых транзисторов сохранять в «плавающем» затворе отсутствие или наличие которого в транзисторе рассматривается в качестве логической единицы или ноля в двоичной Запись и стирание данных в NAND-памяти производятся посредством туннелированных электронов методом Фаулера-Нордхейма при участии диэлектрика. Для этого не требуется что позволяет делать ячейки минимальных размеров. Но именно данный процесс приводит к ячеек, так как электрический ток в таком случае заставляет электроны проникать в затвор, преодолевая диэлектрический барьер. Однако гарантированный срок хранения подобной памяти составляет десять лет. Износ микросхемы происходит не из-за чтения информации, а из-за операций по ее стиранию и записи, поскольку чтение не требует изменения структуры ячеек, а только пропускает электрический ток.

Естественно, производители памяти ведут активные работы в направлении увеличения срока службы твердотельных накопителей данного типа: они устремлены к обеспечению равномерности процессов записи/стирания по ячейкам массива, чтобы одни не изнашивались больше других. Для равномерного распределения нагрузки преимущественно используются программные пути. К примеру, для устранения подобного явления применяется технология «выравнивания износа». При этом данные, часто подвергаемые изменениям, перемещаются в адресное пространство флеш-памяти, потому запись осуществляется по разным физическим адресам. Каждый контроллер оснащается собственным алгоритмом выравнивания, поэтому весьма затруднительно сравнивать эффективность тех или иных моделей, так как не разглашаются подробности реализации. Поскольку с каждым годом объемы флешек становятся все больше, необходимо применять все более эффективные алгоритмы работы, позволяющие гарантировать стабильность функционирования устройств.

Устранение проблем

Одним из весьма эффективных путей борьбы с указанным явлением стало резервирование определенного объема памяти, за счет которого обеспечивается равномерность нагрузки и коррекция ошибок посредством особых алгоритмов логической переадресации для подмены физических блоков, возникающих при интенсивной работе с флешкой. А для предотвращения утраты информации ячейки, вышедшие из строя, блокируются или заменяются на резервные. Такое программное распределение блоков дает возможность обеспечения равномерности нагрузки, увеличив количество циклов в 3-5 раз, однако и этого мало.

И другие виды подобных накопителей характеризуются тем, что в их служебную область заносится таблица с файловой системой. Она предотвращает сбои чтения информации на логическом уровне, например, при некорректном отключении либо при внезапном прекращении подачи электрической энергии. А так как при использовании сменных устройств системой не предусмотрено кэширование, то частая перезапись оказывает самое губительное воздействие на таблицу размещения файлов и оглавление каталогов. И даже специальные программы для карт памяти не способны помочь в данной ситуации. К примеру, при однократном обращении пользователь переписал тысячу файлов. И, казалось бы, только по одному разу применил для записи блоки, где они размещены. Но служебные области переписывались при каждом из обновлений любого файла, то есть таблицы размещения прошли эту процедуру тысячу раз. По указанной причине в первую очередь выйдут из строя блоки, занимаемые именно этими данными. Технология «выравнивания износа» работает и с такими блоками, но эффективность ее весьма ограничена. И тут не важно, какой вы используете компьютер, флешка выйдет из строя ровно тогда, когда это предусмотрено создателем.

Стоит отметить, что увеличение емкости микросхем подобных устройств привело лишь к тому, что общее количество циклов записи сократилось, так как ячейки становятся все меньше, поэтому требуется все меньше и напряжения для рассеивания оксидных перегородок, которые изолируют «плавающий затвор». И тут ситуация складывается так, что с увеличением емкости используемых приспособлений проблема их надежности стала усугубляться все сильнее, а class карты памяти теперь зависит от многих факторов. Надежность работы подобного решения определяется его техническими особенностями, а также ситуацией на рынке, сложившейся на данный момент. Из-за жесткой конкуренции производители вынуждены снижать себестоимость продукции любым путем. В том числе и благодаря упрощению конструкции, использованию комплектующих из более дешевого набора, ослаблению контроля за изготовлением и иными способами. К примеру, карта памяти "Самсунг" будет стоить дороже менее известных аналогов, но ее надежность вызывает гораздо меньше вопросов. Но и здесь сложно говорить о полном отсутствии проблем, а уж от устройств совсем неизвестных производителей сложно ожидать чего-то большего.

Перспективы развития

При наличии очевидных достоинств имеется целый ряд недостатков, которыми характеризуется SD-карта памяти, препятствующих дальнейшему расширению ее области применения. Именно поэтому ведутся постоянные поиски альтернативных решений в данной области. Конечно, в первую очередь стараются совершенствовать уже существующие типы флеш-памяти, что не приведет к каким-то принципиальным изменениям в имеющемся процессе производства. Поэтому не стоит сомневаться только в одном: фирмы, занятые изготовлением этих видов накопителей, будут стараться использовать весь свой потенциал, перед тем как перейти на иной тип, продолжая совершенствовать традиционную технологию. К примеру, карта памяти Sony выпускается на данный момент в широком диапазоне объемов, поэтому предполагается, что она и будет продолжать активно распродаваться.

Однако на сегодняшний день на пороге промышленной реализации находится целый комплекс технологий альтернативного хранения данных, часть из которых можно внедрить сразу же при наступлении благоприятной рыночной ситуации.

Ferroelectric RAM (FRAM)

Технология ферроэлектрического принципа хранения информации (Ferroelectric RAM, FRAM) предлагается с целью наращивания потенциала энергонезависимой памяти. Принято считать, что механизм работы имеющихся технологий, заключающийся в перезаписи данных в процессе считываниям при всех видоизменениях базовых компонентов, приводит к определенному сдерживанию скоростного потенциала устройств. А FRAM - это память, характеризующаяся простотой, высокой надежностью и скоростью в эксплуатации. Эти свойства сейчас характерны для DRAM - энергонезависимой оперативной памяти, существующей на данный момент. Но тут добавится еще и возможность длительного хранения данных, которой характеризуется Среди достоинств подобной технологии можно выделить стойкость к разным видам проникающих излучений, что может оказаться востребованным в специальных приборах, которые используются для работы в условиях повышенной радиоактивности либо в исследованиях космоса. Механизм хранения информации здесь реализуется за счет применения сегнетоэлектрического эффекта. Он подразумевает, что материал способен сохранять поляризацию в условиях отсутствия внешнего электрического поля. Каждая ячейка памяти FRAM формируется за счет размещения сверхтонкой пленки из сегнетоэлектрического материала в виде кристаллов между парой плоских металлических электродов, формирующих конденсатор. Данные в этом случае хранятся внутри кристаллической структуры. А это предотвращает эффект утечки заряда, который становится причиной утраты информации. Данные в FRAM-памяти сохраняются даже при отключении напряжения питания.

Magnetic RAM (MRAM)

Еще одним типом памяти, который на сегодняшний день считается весьма перспективным, является MRAM. Он характеризуется довольно высокими скоростными показателями и энергонезависимостью. в данном случае служит тонкая магнитная пленка, размещенная на кремниевой подложке. MRAM представляет собой статическую память. Она не нуждается в периодической перезаписи, а информация не будет утрачена при выключении питания. На данный момент большинство специалистов сходится во мнении, что этот тип памяти можно назвать технологией следующего поколения, так как существующий прототип демонстрирует довольно высокие скоростные показатели. Еще одним достоинством подобного решения является невысокая стоимость чипов. Флэш-память изготавливается в соответствии со специализированным КМОП-процессом. А микросхемы MRAM могут производиться по стандартному технологическому процессу. Причем материалами могут послужить те, что используются в обычных магнитных носителях. Производить крупные партии подобных микросхем гораздо дешевле, чем всех остальных. Важное свойство MRAM-памяти состоит в возможности мгновенного включения. А это особенно ценно для мобильных устройств. Ведь в этом типе значение ячейки определяется магнитным зарядом, а не электрическим, как в традиционной флеш-памяти.

Ovonic Unified Memory (OUM)

Еще один тип памяти, над которым активно работают многие компании, - это твердотельный накопитель на базе аморфных полупроводников. В его основу заложена технология фазового перехода, которая аналогична принципу записи на обычные диски. Тут фазовое состояние вещества в электрическом поле меняется с кристаллического на аморфное. И это изменение сохраняется и при отсутствии напряжения. От традиционных оптических дисков такие устройства отличаются тем, что нагрев происходит за счет действия электрического тока, а не лазера. Считывание в данном случае осуществляется за счет разницы в отражающей способности вещества в различных состояниях, которая воспринимается датчиком дисковода. Теоретически подобное решение обладает высокой плотностью хранения данных и максимальной надежностью, а также повышенным быстродействием. Высок здесь показатель максимального числа циклов перезаписи, для чего используется компьютер, флешка в этом случае отстает на несколько порядков.

Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM)

Эта технология тоже базируется на основе фазовых переходов, когда в одной фазе вещество, используемое в носителе, выступает в качестве непроводящего аморфного материала, а во второй служит кристаллическим проводником. Переход запоминающей ячейки из одного состояния в другое осуществляется за счет электрических полей и нагрева. Такие чипы характеризуются устойчивостью к ионизирующему излучению.

Information-Multilayered Imprinted CArd (Info-MICA)

Работа устройств, построенных на базе такой технологии, осуществляется по принципу тонкопленочной голографии. Информация записывается так: сначала формируется двумерный образ, передаваемый в голограмму по технологии CGH. Считывание данных происходит за счет фиксации луча лазера на краю одного из записываемых слоев, служащих оптическими волноводами. Свет распространяется вдоль оси, которая размещена параллельно плоскости слоя, формируя на выходе изображение, соответствующее информации, записанной ранее. Начальные данные могут быть получены в любой момент благодаря алгоритму обратного кодирования.

Этот тип памяти выгодно отличается от полупроводниковой за счет того, что обеспечивает высокую плотность записи, малое энергопотребление, а также низкую стоимость носителя, экологическую безопасность и защищенность от несанкционированного использования. Но перезаписи информации такая карта памяти не допускает, поэтому может служить только в качестве долговременного хранилища, замены бумажного носителя либо альтернативы оптическим дискам для распространения мультимедийного контента.

Современные технологии развиваются достаточно быстро, и то, что ещё вчера казалось верхом совершенства, сегодня нас совсем не устраивает. Это особенно относится к современным видам компьютерной памяти. Памяти постоянно не хватает или скорость носителя очень низкая, по современным меркам.

Флеш-память появилась относительно недавно, но имея много преимуществ достаточно серьёзно теснит другие виды памяти.

Флеш- память - это вид твёрдотельной энергонезависимой, перезаписываемой памяти. В отличии от жёсткого диска флешка имеет большую скорость чтения, которая может доходить до 100 Мб/с, очень маленький размер. Её можно легко транспортировать, так как она подключается через USB- порт.

Ею можно пользоваться как ОЗУ, но в отличии от ОЗУ, флеш-память хранит данные при отключенном питании, автономно.

Сегодня на рынке представлены флеш- носители объёмом от 256 мегабайт до 16 гигабайт. Но имеются носители и с большим объёмом.

К дополнительным функциям флеш- памяти можно отнести защиту от копирования, сканер отпечатков пальцев, модуль шифрования и многое другое. Так же если материнская плата поддерживает загрузку через USB- порт, то её можно использовать как загрузочное устройство.

К новым флеш- технологиям можно отнести UЗ. Этот носитель распознаётся компьютером как два диска, где на одном хранятся данные, а со второго происходит загрузка компьютера. Преимущества этой технологии очевидны, вы можете работать на любом компьютере.

Достаточно маленький размер, позволяет использовать этот вид памяти очень широко. Это и мобильные телефоны, фотоаппараты, видеокамеры, диктофоны и другое оборудование.

В описании технических характеристик любого мобильного устройства указывается тип флеш-памяти и не случайно, так как не все типы совместимы. Исходя их этого, надо выбирать достаточно распространенные на рынке флешки, чтобы не иметь проблем с каким-нибудь устройством.
Для некоторых типов флеш-карт существуют адаптеры, которые расширяют её возможности.

Существующие типы флеш-памяти

Современные флеш-карты можно разделить на шесть основных типов.

Первый и самый распространенный тип - это CompactFlash (CF) , имеется двух видов CF type I и CF type II. Имеет хорошую скорость, ёмкость и цену.
К недостаткам относят размер 42*36*4 мм. Является достаточно универсальным и используется во многих устройствах.

IBM Microdrive -дешёвая, но менее надёжная и потребляет больше обычного энергии, что и является причиной её ограниченности.

SmartMedia - тонкая и дешёвая, но не высокая защита от стирания.

Multimedia Card (MMC) - маленький размер (24x32x1,4мм), низкое энергопотребление, используется в миниатюрных устройствах. Недостаток - низкая скорость.

SecureDigital (SD) при сопастовимых размерах с Multimedia Card, имеет больший объём и скорость. Но дороже.

MemoryStick - имеет хорошую защиту информации, скорость, но не очень большую ёмкость.

Сегодня самыми распространёнными считаются CompactFlash и SD/MMC, но
кроме перечисленных карт, существуют и другие виды флеш-карт

Выбирать флеш-карту стоит исходя из своих потребностей, учитывая, что чем больше объём и скорость, тем дороже флеш- карта.

Флеш память

История

Флеш-память была открыта Фудзи Масуока (Fujio Masuoka), когда он работал в Toshiba в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Шойи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR типа.

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 Кб/с). Так указанная скорость в 100x означает 100 × 150 Кб/с = 15 000 Кб/с= 14.65 Мб/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В 2005 году Toshiba и SanDisk представили NAND чипы объёмом 1 Гб, выполненных по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 8 Гб чип, выполненный по 40-нм технологическому процессу. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 Гб. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. В основном на середину 2007 года USB устройства и карты памяти имеют объём от 512 Мб до 15 Гб. Самый большой объём USB устройств составляет 128 Гб.

NAND тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0, выпущенная в 28 декабря 2006 года. Группа ONFI поддерживается крупнейшими производителями NAND чипов: Intel, Micron Technology и Sony .

Принцип работы

максимальные возможные объёмы данных для кристаллов, использующих однобитные (SLC) или двухбитные (MLC)

Элементарной ячейка хранения данных флэш-памяти представляет из себя транзистор с плавающим затвором. Особенность такого транзистора в том, что он умеет удерживать электроны (заряд). Вот на его основе и разработаны основные типы флэш-памяти NAND и NOR. Конкуренции между ними нет, потому что каждый из типов обладает своим преимуществом и недостатком. Кстати, на их основе строят гибридные версии такие как DiNOR и superAND. Во флэш-памяти производители используют два типа ячеек памяти MLC и SLC . .

  • Флэш-память с MLC (Multi-level cell - многоуровневые ячейки памяти)ячейки более емкие и дешевые, но они с большим временем доступа и меньшим количеством циклов записи/стирания (около 10000).
  • Флэш-память, которая содержит в себе SLC (Single-level cell - одноуровневые ячейки памяти) ячейки имеет максимальное количество циклов записи/стирания(100000) и обладают меньшим временем доступа. Изменение заряда (запись/стирание) выполняется приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора.

Принцип работы флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области ("карман") полупроводниковой структуры. Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения. Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек.

NOR и NAND

Компоновка шести ячеек NOR flash

Структура одного столбца NAND flash с 8 ячейками

Флеш память различается методом соединения ячеек в массив.

Конструкция NOR использует классическую двумерную матрицу проводников, в которой на пересечении строк и столбцов установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов - ко второму затвору. Исток подключался к общей для всех подложке.

Конструкция NAND - трёхмерный массив. В основе та же самая матрица, что и в NOR, но вместо одного транзистора в каждом пересечении устанавливается столбец из последовательно включенных ячеек. В такой конструкции получается много затворных цепей в одном пересечении. Плотность компоновки можно резко увеличить (ведь к одной ячейке в столбце подходит только один проводник затвора), однако алгоритм доступа к ячейкам для чтения и записи заметно усложняется. Также в каждой линии установлено два МОП-транзистора. Управляющий транзистор разрядной линии (англ. bit line select transistor), расположенный между столбцом ячеек и разрядной линией. И управляющий транзистор заземления, расположенный перед землёй (англ. ground select transistor).

Технология NOR позволяет получить быстрый доступ индивидуально к каждой ячейке, однако площадь ячейки велика. Наоборот, NAND имеют малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Соответственно, различается область применения: NOR используется как непосредственная память программ микропроцессоров и для хранения небольших вспомогательных данных.

Названия NOR и NAND произошли от ассоциации схемы включения ячеек в массив со схемотехникой микросхем КМОП-логики.

NAND чаще всего применяется для USB флеш накопителей, карт памяти, SSD. NOR в свою очередь во встраиваемых системах.

Существовали и другие варианты объединения ячеек в массив, но они не прижились.

NOR

NOR Флеш память

Архитектура NOR получила название благодаря логической операции ИЛИ - НЕ (в переводе с английского NOR). Принцип логической операции NOR заключается в том, что она над несколькими операндами (данные, аргумент операции...) дает единичное значение, когда все операнды равны нулю, и нулевое значение во всех остальных операциях. В нашем случае под операндами подразумевается значение ячеек памяти, а значит в данной архитектуре единичное значение на битовой линии будет наблюдается только в том случае, когда значение всех ячеек, которые подключены к битовой линии, будут равны нулю (все транзисторы закрыты). В этой архитектуре хорошо организован произвольный доступ к памяти, но процесс записи и стирания данных выполняется относительно медленно. В процессе записи и стирания применяется метод инжекции горячих электронов. Ко всему прочему микросхема флеш-памяти с архитектурой NOR и размер ее ячейки получается большим, поэтому эта память плохо масштабируется.Флеш-память с архитектурой NOR как правило используют в устройствах для хранения программного кода. Это могут быть телефоны, КПК, BIOS системных плат... Применение NOR-флеши, устройства энергонезависимой памяти относительно небольшого объёма, требующие быстрого доступа по случайным адресам и с гарантией отсутствия сбойных элементов:

  • Встраиваемая память программ однокристальных микроконтроллеров. Типовые объёмы - от 1 кбайта до 1 Мбайта.
  • Стандартные микросхемы ПЗУ произвольного доступа для работы вместе с микропроцессором.
  • Специализированные микросхемы начальной загрузки компьютеров (POST и BIOS), процессоров ЦОС и программируемой логики. Типовые объёмы - единицы и десятки мегабайт.
  • Микросхемы хранения среднего размера данных, например, DataFlash. Обычно снабжаются интерфейсом SPI и упаковываются в миниатюрные корпуса. Типовые объёмы - от сотен кбайт до технологического максимума.

Максимальное значение объёмов микросхем NOR - до 256 Мбайт.

NAND

NAND Флеш память

Данный тип памяти был разработан компанией Toshiba. Эти микросхемы благодаря своей архитектуре применяют в маленьких накопителях, которые получили имя NAND (логическая операция И-НЕ). При выполнении операция NAND дает значение нуль только, когда все операнды равны нулю, и единичное значение во всех других случаях. Как было написано ранее, нулевое значение это открытое состояние транзистора. В следствии этого в архитектуре NAND подразумевается, что битовая линия имеет нулевое значение в том случае, когда все подключенные к ней транзисторы открыты, и значение один, когда хотя бы один из транзисторов закрыт. Такую архитектуру можно построить, если подсоединить транзисторы с битовой линией не по одному (так построено в архитектуре NOR) , а последовательными сериями (столбец из последовательно включенных ячеек).

Данная архитектура по сравнению с NOR хорошо масштабируется потому, что разрешает компактно разместить транзисторы на схеме. Кроме этого архитектура NAND производит запись путем туннелирования Фаулера - Нордхейма, а это разрешает реализовать быструю запись нежели в структуре NOR. Чтобы увеличить скорость чтения, в микросхемы NAND встраивают внутренний кэш. Как и кластеры жесткого диска так и ячейки NAND группируются в небольшие блоки. По этой причине при последовательном чтении или записи преимущество в скорости будет у NAND. Но с другой стороны NAND сильно проигрывает в операции с произвольным доступом и не имеет возможности работать на прямую с байтами информации. В ситуации когда нужно изменить всего несколько бит, система вынуждена переписывать весь блок, а это если учитывать ограниченное число циклов записи, ведет к большому износу ячеек памяти.В последнее время ходят слухи о том, что компания Unity Semiconductor разрабатывает флэш-память нового поколения, которая будет построена на технологии CMOx. Предполагается, что новая память придет на смену флеш-памяти типа NAND и преодолеет ее ограничения, которые в памяти NAND обусловлены архитектурой транзисторных структур. К преимуществам CMOx относят более высокую плотность и скорость записи, а также более привлекательную стоимость. В числе областей применения новой памяти значатся SSD и мобильные устройства. Ну, что же правда это или нет покажет время.

Запись

Для записи заряды должны попасть в плавающий затвор, однако он изолирован слоем оксида. Для перенесения зарядов может использоваться эффект туннелирования. Для разряда необходимо подать большой положительный заряд на управляющий затвор: отрицательный заряд с помощью туннельного эффекта покинет плавающий затвор. И наоборот, для заряда плавающего затвора необходимо подать большой отрицательный заряд.

Также запись может быть реализована с помощью инжекции горячих носителей. При протекании тока между истоком и стоком повышенного напряжения электроны могут преодолевать слой оксида и оставаться в плавающем затворе. При этом необходимо, чтобы на управляющем затворе присутствовал положительный заряд, который создавал бы потенциал для инжекции.

В MLC для записи разных значений используются разные напряжения и время подачи.

Каждая запись наносит небольшой ущерб оксидному слою, поэтому число записей ограничено.

Запись в NOR и NAND компоновке состоит из двух стадий: вначале все транзисторы в линии устанавливаются в 1 (отсутствие заряда), затем нужные ячейки устанавливаются в 0.

На первой стадии очистка ячеек происходит с помощью туннельного эффекта: на все управляющие затворы подаётся сильное напряжение. Для установки конкретной ячейки в 0 используется инжекция горячих носителей. На разрядную линию подаётся большое напряжение. Вторым важным условием этого эффекта является наличие положительных зарядов на управляющем затворе. Положительное напряжение подаётся лишь на некоторые транзисторы, на остальные транзисторы подаётся отрицательное напряжение. Таким образом ноль записывается только в интересующие нас ячейки.

  • NAND

Первая стадия в NAND аналогична NOR. Для установки нуля в ячейку используется туннельный эффект, в отличие от NOR. На интересующие нас управляющие затворы подаётся большое отрицательное напряжение.

Технологическое масштабирование

Из-за своей высокорегулярной структуры и высокого спроса на большие объёмы техпроцесс при изготовлении флеш-памяти NAND уменьшается более быстро, чем для менее регулярной DRAM -памяти и почти нерегулярной логики (ASIC). Высокая конкуренция между несколькими ведущими производителями лишь ускоряет этот процесс. В варианте закона Мура для логических микросхем удвоение количества транзисторов на единицу площади происходит за три года, тогда как NAND-флеш показывала удвоение за два года. В 2012 году 19 нм техпроцесс был освоен совместным предприятием Toshiba и SanDisk. В ноябре 2012 года Samsung также начала производство по техпроцессу 19 нм (активно используя в маркетинговых материалах фразу «10нм-класс», обозначавшую какой-то процесс из диапазона 10-19 нм).

ITRS или компании 2010 2011 2012 2013 2014 2015* 2016*
ITRS Flash Roadmap 2011 32 нм 22 нм 20 нм 18 нм 16 нм
ITRS Flash Roadmap 2013 17 нм 15 нм 14 нм
Samsung 35-32 нм 27 нм 21 нм (MLC, TLC) 19 nm 19-16 нм
V-NAND (24L)
12 нм
V-NAND (32L)
12 нм
Micron, Intel 34-25 нм 25 нм 20 нм (MLC + HKMG) 20 нм (TLC) 16 нм 12 нм
3D-NAND
3D-NAND Gen2
Toshiba, Sandisk 43-32 нм 24 нм 19 нм (MLC, TLC) A-19 нм 15 нм 3D NAND BiCS 3D NAND BiCS
SK Hynix 46-35 нм 26 нм 20 нм (MLC) 20 нм 16 нм 3D V1 12 нм

Уменьшение техпроцесса позволяло быстро наращивать объёмы чипов памяти NAND-флеш. В 2000 году флеш-память по технологии 180 нм имела объём данных в 512 Мбит на кристалл, в 2005 - 2 Гбит при 90 нм. Затем произошёл переход на MLC, и в 2008 чипы имели объём 8 Гбит (65 нм). На 2010 год около 35 %-25 % чипов имели размер 16 Гбит, 55 % - 32 Гбит. В 2012-2014 годах в новых продуктах широко использовались кристаллы объёмом 64 Гбит, и начиналось внедрение 128 Гбит модулей (10 % на начало 2014 года), изготовленных по техпроцессам 24-19 нм.

По мере уменьшения техпроцесса и его приближению к физическим пределам текущих технологий изготовления, в частности, фотолитографии, дальнейшее увеличение плотности данных может быть обеспечено переходом на большее количество бит в ячейке (например, переход с 2-битной MLC на 3-битную TLC), заменой FG-технологии ячеек на CTF технологию или переходом на трёхмерную компоновку ячеек на пластине (3D NAND, V-NAND; однако при этом увеличивается шаг техпроцесса). Например, приблизительно в 2011-2012 годах всеми производителями были внедрены воздушные промежутки между управляющими линиями, позволившие продолжить масштабирование далее 24-26 нм, а Samsung с 2013-2014 года начала массовый выпуск 24- и 32-слойной 3D NAND на базе CTF технологии, в том числе, в варианте с 3-х битными (TLC) ячейками. Проявляющееся с уменьшением техпроцесса уменьшение износостойкости (ресурса стираний), а также увеличение темпа битовых ошибок потребовало применение более сложных механизмов коррекции ошибок и снижения гарантированных объёмов записи и гарантийных сроков. Однако, несмотря на принимаемые меры, вероятно, что возможности дальнейшего масштабирования NAND-памяти будут экономически не оправданы или физически невозможны. Исследуется множество возможных замен технологии флеш-памяти, в частности, FeRAM, MRAM, PMC, PCM, ReRAM и т. п.

3D NAND

Схемотехника NAND оказалась удобна для построения вертикальной компоновки блока ячеек на кристалле. На кристалл послойно напыляют проводящие и изолирующие слои, которые образуют проводники затворов и сами затворы. Затем в этих слоях формируют множество отверстий на всю глубину слоев. На стенки отверстий наносят структуру полевых транзисторов - изоляторы и плавающие затворы. Таким образом формируют столбец кольцеобразных полевых транзисторов с плавающими затворами.

Такая вертикальная структура оказалась очень удачна и обеспечила качественный рывок плотности флеш-памяти. Некоторые компании продвигают технологию под своими торговыми марками, например V-NAND, BiCS. На 2016 год количество слоев топовых изделий достигло 64-х. .

Срок хранения данных

Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий, не превышает 10-20 лет, хотя гарантия на носители даётся не более чем на 5 лет. При этом память MLC имеет меньшие сроки, чем SLC.

Специфические внешние условия, например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий), могут катастрофически сократить срок хранения данных.

У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.

По данным Dell, длительность хранения данных на SSD, отключенных от питания, сильно зависит от количества прошедших циклов перезаписи (P/E) и от типа флеш-памяти и в худших случаях может составлять 3-6 месяцев.

Иерархическая структура

Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше, чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно это - характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM .

Как следствие - все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.

Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения - 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи - до сотен байт, страницы чтения - единицы-десятки байт.

Всем доброго дня!
Сегодняшняя статья положит начало новому, небольшому циклу статей, посвященному хранению информации, различным типам памяти, способам записывания/считывания информации и всему, что с этим связано 😉 И начнем мы с устройства хорошо нам всем знакомой Flash-памяти.

Что из себя вообще представляет Flash-память? Да просто обычная микросхема, ничем внешне не отличающаяся от любой другой. Поэтому может возникнуть резонный вопрос – а что там внутри и как вообще происходят процессы сохранения/считывания информации.

Итак, сердцем многих устройств памяти является полевой транзистор с плавающим затвором. Гениальнейшее изобретение 70-х годов 20-го века. Его отличие от обычных полевых транзисторов заключается в том, что между затвором и каналом, прямо в диэлектрике, расположен еще один проводник – который и называют плавающим затвором. Вот как все это выглядит:

На рисунке мы видим привычные нам сток-исток-затвор, а также расположенный в диэлектрике дополнительный проводник. Давайте разберемся как же это устройство работает.

Создадим между стоком и истоком разность потенциалов и подадим положительный потенциал на затвор. Что тогда произойдет? Правильно, через полевой транзистор, от стока к истоку потечет ток. Причем величина тока достаточно велика для того, чтобы “пробить” диэлектрик. В результате этого пробоя часть электронов попадет на плавающий затвор. Отрицательно заряженный плавающий затвор создает электрическое поле, которое начинает препятствовать протеканию тока в канале, в результате чего транзистор закрывается. И если отключить питание транзистора, электроны с плавающего затвора никуда не денутся и его заряд останется неизменным на долгие годы.

Но, конечно же, есть способ разрядить плавающий затвор. Для этого надо всего лишь подать на “основной” затвор напряжение противоположного знака, которое и “сгонит” все электроны, в результате чего плавающий затвор останется не заряженным.

Собственно так и происходит хранение информации – если на затворе есть отрицательный заряд, то такое состояние считается логической единицей, а если заряда нет – то это логический ноль.

С сохранением информации разобрались, осталось понять как нам считать информацию из транзистора с плавающим затвором. А все очень просто. При наличии заряда на плавающем затворе его электрическое поле препятствует протеканию тока стока. Допустим при отсутствии заряда мы могли подавать на “основной” затвор напряжение +5В, и при этом в цепи стока начинал протекать ток. При заряженном плавающем затворе такое напряжение не сможет заставить ток течь, поскольку электрическое поле плавающего затвора будет ему мешать. В этом случае ток потечет только при напряжении +10В (к примеру =)). Таким образом, мы получаем два пороговых значения напряжения. И, подав, к примеру +7.5В мы сможем по наличию или отсутствию тока стока сделать вывод о наличии или отсутствии заряда на плавающем затворе. Вот таким образом и происходит считывание сохраненной информации.

Как все это связано с Flash-памятью? А очень просто – полевой транзистор с плавающим затвором является минимальной ячейкой памяти, способной сохранить один бит информации. И любая микросхема памяти состоит из огромного количества расположенных определенным образом транзисторов. И вот теперь пришло время рассмотреть основные типы Flash-памяти. А именно я бы хотел обсудить NOR и NAND память.

Оба этих типа памяти построены на основе транзисторов с плавающим затвором, которым мы сегодня уделили немало времени) А принципиальное отличие состоит в том, каким образом соединены эти транзисторы.

Конструкция NOR использует двумерную таблицу проводников. Проводники называют линией битов и линией слов. Все стоки транзисторов подключаются к линии битов, а все затворы к линии слов. Рассмотрим пример для лучшего понимания.

Пусть нам надо считать информацию из какой-то конкретной ячейки. Эта ячейка, а точнее этот конкретный транзистор, подключен затвором на одну из линий слов, а стоком на одну из линий битов. Тогда мы просто подаем пороговое напряжение на линию слов, соответствующую затвору нашего транзистора и считываем его состояние как в том примере, что мы рассмотрели чуть выше для одной ячейки.

С NAND все несколько сложнее. Если возвращаться к аналогии с массивом, то ячейки NAND-памяти представляют собой трехмерный массив. То есть к каждой линии битов подключен не один, а сразу несколько транзисторов, что в итоге приводит к уменьшению количества проводников и увеличению компактности. Это как раз и является одним из главных преимуществ NAND-памяти. Но как же нам считать состояние определенного транзистора при такой структуре? Для понимания процесса рассмотрим схему:

Как видно из схемы, одна линия битов соответствует нескольким ячейкам. И важной особенностью является следующее: если хотя бы один из транзисторов закрыт, то на линии битов будет высокое напряжение. Вот смотрите:

Действительно, низкий уровень на линии битов будет только тогда, когда вся цепочка транзисторов окажется открытой (вспоминаем курс, посвященный полевым транзисторам 😉).

С этим вроде бы понятно, возвращаемся к нашему вопросу – как же считать состояние конкретного транзистора? А для этого недостаточно просто подать на линию слов (на затвор транзистора) пороговое напряжение и следить за сигналом на линии битов. Необходимо еще чтобы все остальные транзисторы были в открытом состоянии. А делается это так – на затвор нашего транзистора, состояние которого нам нужно считать, подается пороговое напряжение (как и в случае с NOR-памятью), а на затворы всех остальных транзисторов в этой цепочке подается повышенное напряжение, такое чтобы независимо от состояния плавающего затвора транзистор открылся. И тогда считав сигнал с линии битов мы узнаем в каком состоянии интересующий нас транзистор (ведь все остальные абсолютно точно открыты). Вот и все)

Такая вот получилась статейка сегодня) Разобрались мы с принципом работы и основными типами Flash, а также с устройством и принципом работы NAND и NOR-памяти. Надеюсь, что статья окажется полезной и понятной, до скорых встреч!

Несмотря на прогресс компьютерных технологий еще всего 3-4 года назад много новых компьютеров (а тем более старых) имели в своем составе флоппи-дисковод. Значительное удешевление оптических приводов и компакт-дисков не смогли заменить 3.5-дюймовые дискеты. Неудобно пользоваться оптическими носителями и все тут. Если считывание данных с них еще особого дискомфорта не вызывает, то вот запись и удаление уже требовали какого-то времени. Да и надежность дисков хоть и многократно выше чем у дискет, все равно через какое-то время, особенно после активного использования, начинает падать. Как всегда в самый неподходящий момент привод от старости (своей или диска) "взбрыкнет" и скажет, что диска на горизонте не заметно.

Вот и продержались дискеты так долго. Носить на них какую-нибудь мелочь вроде документов, либо исходных кодов программ еще вполне можно. Но сейчас и для этого типа данных порой не хватает 1.38 Мбайт свободного места.

Решение проблемы замаячило довольно давно. Имя ему флэш-память. Изобретена она была еще в 80-х годах прошлого века, но до реально массовых продуктов добралась к концу 90-х. И причем первое время у нас она была доступна в качестве карт-памяти, а затем в виде MP3-плееров, которые сегодня уже сменили аббревиатуру MP3 на более гордый и обобщающий эпитет "цифровой".

Далее последовало появление USB-флэш накопителей. Процесс их проникновения был по началу не самым быстрым. Начался он с появления решений на 16-64 Мбайт. Сейчас это мизер, но лет 8 назад по сравнению с дискетой это было ого-го как хорошо. А плюс к этому добавлялось удобство работы, высокая скорость чтения/записи и, конечно же, высокая цена. Тогда такие флэшки стояли дороже пишущего оптического привода, которые сами оценивались в сумму порядка $100.

Тем не менее, удобство флэшек оказало решающее влияние на выбор потребителя. В итоге в 2005 году начался настоящий бум. Стоимость флэш-памяти многократно упала, а вместе с ней выросла емкость накопителей. В итоге сегодня за каких-нибудь 2000-2500 рублей можно купить флэшку на 32 Гбайта, тогда как год назад такая стоила чуть ли не вдвое дороже.

Прогресс в области флэш-памяти оказался успешным на столько, что она сегодня уже начинает конкурировать с жесткими дисками. Пока что только в области скорости чтения/записи и времени доступа, а также в энергетических показателях и прочности, но победу по емкости в ближайшие годы также исключать нельзя. Единственное достоинство HDD – это цена. Один "жесткий" гигабайт стоит куда меньше. Но и это лишь вопрос времени.

Итак, флэш-память - это одна из наиболее перспективных компьютерных технологий для хранения данных. Но откуда она такая взялась и каковые ее возможные ограничения и недостатки? Как раз на эти все вопросы и призвана ответить эта статья.

Прошлое

В то время как японские грузчики разгружали одну из первых партий компьютеров Apple, привезенных в холодильниках из-за изображенного яблока на коробках, один японский ученый по имени Фуджио Масуоки трудился в стенах исследовательской лаборатории Toshiba над новым типом памяти. Название ей придумали не сразу, но перспективы изобретения ученому были видны с самого начала.

Впрочем, с названием определились довольно быстро. Коллега Фуджио, господин Шоджи Ариизуми, предложил назвать новую память "flash". Один из переводов этого слова обозначает вспышку фотоаппарата (да и в принципе любую другую вспышку света). На такую мысль Шоджи навел способ стирания данных.

Представлена новая технология была в 1984 году в Сан-Франциско на мероприятии под названием International Electron Devices Meeting (международная встреча производителей электронных устройств), проведенным институтом IEEE. Заметили ее сразу, причем довольно крупные компании. К примеру Intel выпустила свой первый коммерческий NOR-чип уже в 1988 году.

Пять лет спустя, в 1989 году, Toshiba на аналогичном мероприятии представила технологию NAND-флэш памяти. Сегодня именно этот тип применяется в подавляющем большинстве устройств. Почему именно - расскажем в следующем разделе.

NOR и NAND

NOR-память была представлена несколько раньше поскольку она чуть проще в производстве, да и ее транзисторы по своему строению напоминают обычный MOSFET-транзистор (канальный полевой униполярный МОП-транзистор). Разница заключается лишь в том, что в NOR-памяти транзистор в дополнение к контролирующему затвору имеет второй, "плавающий", затвор. Последний при помощи специального изолирующего слоя может удерживать электроны в течение многих лет, держа транзистор не разряженным.

Вообще свое название NOR-память получила из-за работы как NOR-затвор (NOR – логическая операция НЕ-ИЛИ; принимает значение "истина" только когда на оба входа подается "ложь"). Так что пустая ячейка NOR-памяти заполнена логическим значением "1". Кстати, тоже самое касается и NAND-памяти. И, как не сложно догадаться, она свое название получила из-за схожего принципа работы с NAND-затвором (NAND – логическая операция НЕ-И; принимает значение "ложь" только когда на оба входа подается "истина").

Во что выливается на практике эти самые "НЕ-И" и "НЕ-ИЛИ"? В то, что чип NOR-памяти можно очистить только целиком. Хотя в более современных инкарнациях данной технологии чип разбит на несколько блоков, занимающих обычно 64, 128 или 256 Кбайт. Зато этот тип памяти имеет внешнюю шину адресов, что позволяет побайтное чтение и программирование (запись). Это позволяет не только максимально точно получать доступ к данным напрямую, но и исполнять их прямо "на месте", не выгружая всю информацию в оперативную память. Эта возможность называется XIP (eXecute In Place – выполнение на месте).

Стоит также рассказать о сравнительно новой функции NOR-памяти под названием BBM (Bad Block Management - управление бэд-блоками). Со временем часть ячеек может придти в негодность (точнее станет недоступна их запись) и контроллер чипа, заметив это, переназначит адрес таких ячеек на другой, пока еще рабочий блок. Чем-то подобным занимаются и жесткие диски, о чем мы писали в статье " ".

Таким образом NOR-память хорошо подходит для тех случаев, когда требуется максимальная точность считывания данных и довольно редкое их изменение. Догадываетесь к чему мы клоним? Правильно - к прошивкам различных устройств, в частности BIOS системных плат, видеокарт и т.д. Именно там сейчас NOR-флэш и применяется чаще всего.

Что касается NAND, то с ней ситуация чуть "позаковыристей". Чтение данных может осуществляться только постранично, а запись - поблочно. Один блок состоит из нескольких страниц, а одна страница обычно имеет размер 512, 2048 или 4096 байт. Число страниц в блоке как правило варьируется от 32 до 128. Так что ни о каком исполнение "на месте" речи не идет. Еще одно ограничение NAND-памяти - это то, что запись в блок может осуществляться только последовательно.

В итоге подобная точность (хотя правильнее будет сказать "не точность") порой приводит к ошибкам, особенно если приходится иметь дело с MLC-памятью (об этом типе чуть ниже). Для их коррекции применяется механизм ECC. Он может исправить от 1 до 22 бит в каждых 2048 битах данных. Если исправление невозможно, то механизм определяет наличие ошибки во время записи или стирания данных и блок помечается как "плохой".

Кстати, для предотвращения образования бэд-блоков во флэш-памяти существует специальный метод под названием "wear levelling" (дословно "уровень износа"). Работает он довольно просто. Поскольку "живучесть" блока флэш-памяти зависит от количества операций стирания и записи, а для разных блоков это количество разное, контроллер устройства подсчитывает число этих операций для блоков, стараясь со временем проводить запись на те, что использовались меньше. То есть на те, которые меньше "изношены".

Ну а что касается области применения NAND-памяти, то благодаря возможности более плотного размещения транзисторов, а заодно более дешевого их изготовления, она как раз и используется во всех картах флэш-памяти и USB-флэшках, а также SSD.

Ну и немного об SLC (Single-Level Cell - одноуровневая ячейка) и MLC (Multi-Level Cell - многоуровневая ячейка) ячейках. Изначально был доступен только первый тип. Он предполагает, что в одной ячейке может храниться только два состояния, то есть один бит данных. Чипы MLC были придуманы позже. Их возможности чуть шире - в зависимости от напряжения контроллер может считать с них более двух значений (как правило четыре), что позволяет хранить в одной ячейке от 2 и более бит.

Достоинства MLC на лицо - при том же физическом размере в одну ячейку помещается вдвое больше данных. Недостатки, впрочем, не менее существенны. Прежде всего это скорость считывания - она естественно ниже, чем у SLC. Ведь требуется создание более точного напряжения, а после этого необходимо правильно расшифровать полученную информацию. И тут же возникает второй недостаток - неизбежные ошибки при считывании и записи данных. Нет, данные не повреждаются, но это сказывается на скорости работы.

Довольно существенный недостаток флэш-памяти - это ограниченное число циклов записи и стирания данных. В этом отношении она пока что не очень хорошо может соперничать с жесткими дисками, но в целом ситуация с каждым годом улучшается. Вот данные по времени службы разных типов флэш-памяти:

  • SLC NAND – до 100 тысяч циклов;
  • MLC NAND – до 10 тысяч циклов;
  • SLC NOR – от 100 до 1000 тысяч циклов;
  • MLC NOR – до 100 тысяч циклов.

Вот вам и еще один недостаток MLC-памяти - она менее долговечна. Ну а NOR-флэш вообще вне конкуренции. Правда, от этого мало толку обычному обывателю - все равно его флэшка вероятнее всего построена на основе NAND-флэш, да еще и на MLC-чипах. Впрочем, технологии не стоят на месте и уже в массы постепенно идет NAND-флэш с миллионым циклом записи и стирания данных. Так что со временем эти параметры станут для нас мало существенными.

"Карточки"

Разобравшись с типами флэш-памяти теперь перейдем к реальным продуктам на ее основе. Само собой описание микросхем BIOS мы опустим, поскольку большинство читателей они интересуют мало. Также как не имеет смысла рассказывать о USB-флэшках. С ними все предельно просто: подключаются через интерфейс USB, установленные внутри чипы целиком и полностью зависят от производителя. Стандартов для этих носителей никаких нет, если не считать необходимость наличия совместимости с USB.

Зато стандарты требуются для флэш-карт, которые сегодня используются в цифровых фотоаппаратах, плеерах, мобильных телефонах и других мобильных устройствах. Карт-ридер для них имеется в большинстве ноутбуков и нетбуков, а еще такой можно встретить в бытовых DVD (или Blu-ray) проигрывателях, либо автомагнитолах.

Для этих устройств существует одна универсальная характеристика - число поддерживаемых карт памяти. Порой на карт-ридерах можно увидеть гордые надписи "20-в-1" или даже "30-в-1", означающие число поддерживаемых форматов. Но что самое удивительное, принципиально разных массовых форматов всего 6. Все остальные - это их модификации. Вот на этих шести стандартах мы и остановимся далее.

CompactFlash

Формат CompactFlash занимает особое место среди всех остальных форматов карт флэш-памяти. Прежде всего потому, что он был самым первым массовым стандартом. Его представила компания SanDisk в 1994 году. И до сих пор он активно применяется в цифровых зеркальных камерах, а также компьютерах-роутерах и других узкоспециализированных устройствах.

Самое интересное, что первые CF-карточки были основаны на NOR-чипах производства Intel. Но потом довольно быстро были переведены на NAND-флэш, что позволило снизить стоимость и повысить емкость.

CompactFlash создавался как формат для внешнего хранения данных. Но поскольку 15 лет назад карт-ридеров не было, да и USB только проектировался, CF-карты были созданы на основе спецификаций интерфейса ATA (IDE). Таким образом такая карточка может быть подключена к обычному IDE-разъему или вставлена в слот PC Card через пассивный адаптер. Именно поэтому CompactFlash очень удобно использовать в роутерах и аналогичных устройствах - скорость и большой объем там не требуются, а вот размеры, ударостойкость и малый нагрев куда более актуальны.

Кроме того не составляет труда сделать переходник для интерфейса USB или FireWire. И, что самое интересное, большинство карт-ридеров используют систему ввода/вывода CompactFlash для обмена данными между компьютером и другими форматами: SD/MMC, Memoty Stick, xD и SmartMedia.

Теперь о различных модификациях стандарта CompactFlash. Изначально такие карточки выпускались в едином "картридже" размером 43х36х3.3 мм. Он применяется и сегодня. Но когда был представлен однодюймовый винчестер IBM Microdrive, то был добавлен второй форм-фактор с размерами 43х36х5.0 мм. Таким образом первый стал называться CF Type I, а второй - CF Type II. После того как выпуск Microdrive (и его аналогов) был остановлен актуальность CF Type II сошла на нет.

Имеется у CompactFlash еще несколько ревизий. Их необходимость возникла по мере роста скоростей чтения/записи, а также объема. Так ревизия 2.0 повысила максимальную скорость до 16 Мбайт/с. Позже появилась ревизия 3.0, увеличившая это значение до 66 Мбайт/с. Ну и самая последняя версия 4.0/4.1 позволяет вести обмен данными на скорости до 133 Мбайт/с. Последнее значение соответствует стандарту UDMA133, который также уже теряет свою актуальность.

На смену четвертой ревизии уже подготавливается... нет, не новая ревизия - новый формат - CFast. Его главное принципиальное отличие - использование интерфейса SerialATA вместо IDE. Само собой это полностью перекрывает обратную совместимость с прежним типом разъема, зато увеличивает максимальную скорость до 300 Мбайт/с и возможность наращивания объема куда больше 137 Гбайт. Заметим, что для обмена данными CFast использует семь контактов, как и обычный SATA-интерфейс. Зато питание подается через 17 контактов, тогда как у SATA-устройств их 15. Так что напрямую подключить CFast-карту к материнской плате не получится, придется использовать переходник. Появится такие карточки должны уже в этом году. В январе на CES 2009 уже были продемонстрированы первые образцы емкостью 32 Гбайта.

Теперь остается рассказать о скорости обмена данными и доступных на сегодняшний день объемах карт CompactFlash. Скорость у CF-карточек (да и у остальных накопителей флэш-памяти, кроме SSD, тоже) измеряется точно так, как и у CD-дисков. То есть 1х соответствует 150 Кбайт/с. На самых быстрых представителях красуются надписи 300х, что соответствует есть 45 Мбайт/с. В принципе не мало, но и до жестких дисков на пару с SSD далеко. Но со временем скорость будет только возрастать.

Ну а что касается объема, то за все время были выпущены карты CompactFlash емкостью от 2 Мбайт до 100 Гбайт. Сегодня наиболее распространены варианты от 1 до 32 Гбайт. Впрочем, в продаже уже доступны версии на 48, 64 и 100 Гбайт, хотя они пока что довольно редки. Пока что формат CompactFlash предлагает самые емкие карты флэш-памяти. Но зато другие могут предложить иные преимущества. О них читаем далее.

SmartMedia

Вторым массовым форматом флэш-карт стал SmartMedia. Он был представлен на год позже CompactFlash - летом 1995 года. Собственно, он и создавался как конкурент CF. Что SmartMedia мог предложить? Прежде всего меньшие размеры. А если быть еще точнее, то только меньшую толщину - всего 0.76 мм; ширина и длина таких карточек была 45х37 мм, тогда как у CompactFlash эти параметры почти такие же - 43х36 мм. Надо отметить, что в плане толщины SM пока еще не превзошел ни один другой формат. Даже сверхкомпактные карты microSD "пожирнее" - 1 мм.

Подобного показателя удалось достигнуть благодаря изъятию чипа-контроллера. Он был перенесен в карт-ридер. Да и внутри самой SM-карты по началу мог размещаться один NAND-чип, по потом, по мере совершенствования технологии, их там стало больше.

Но отсутствие контроллера внутри карточки имеет определенные минусы. Во-первых по мере роста объема и выхода новых моделей носителей приходилось обновлять прошивку карт-ридера. Да и не всегда эта операция была доступна, если карт-ридер был совсем уж старым. Также со временем началась путаница с рабочим напряжением карт SmartMedia. Изначально оно было 5.0 В, а потом 3.3 В. И если карт-ридер не поддерживал одно из них, то с такими картами он работать не мог. Более того, при вставке карточки на 3.3 вольта в 5.0-вольтовый карт-ридер она могла повредиться или сгореть.

Во-вторых для формата SmartMedia невозможно использование метода подсчета уровня износа блоков флэш-памяти (метод wear levelling мы описали в прошлом разделе). А это потенциально угрожает сократить срок службы карты памяти.

Впрочем, все это не помешало довольно долго использовать SmartMedia в качестве основного формата для цифровых камер - в 2001 году его поддерживало до половины таких устройств на рынке, хотя тогда и рынок этот был куда поскромнее сегодняшнего. В других цифровых устройствах вроде плееров, КПК или мобильных телефонов SmartMedia себя на нашел. Да и производители камер стали отказываться от SM. Фотоаппараты становились все меньше и малой толщины этих карточек уже было недостаточно. Ну и второй существенный минус - рост потребности в большей емкости. Карты SmartMedia достигли объема всего 128 Мбайт. Планировались варианты на 256 Мбайт, но их так и не выпустили.

А вообще SmartMedia задумывался как замена для 3.5-дюймовых флоппи-дискет. Для них даже был выпущен специальный адаптер под названием FlashPath. Его представили в мае 1998 года и через год их было продано миллион штук. Разработан он был компанией SmartDisk, которая, кстати, выпускала аналогичные адаптеры и для карт MemoryStick и SD/MMC.

Самое удивительное, что работать FlashPath может с любым флоппи-дисководом, отменным логотипом "HD" (High-Density - высокая плотность). Короче подходит любой, который читает 1.44 Мбайт дискеты. Но есть одно "но". Без него никак не обойтись. А тут их даже два. Первое - для распознания FlashPath-адаптера и карточки внутри него требуется специальный драйвер. И если его под нужную ОС не имеется, то она в пролете. Так что загрузится с такой дискеты уже не получится. Второе "но" - скорость работы. Она не превышает таковую при работе с обычной дискеты. И если 1.44 Мбайт можно было скопировать или записать чуть больше чем за минуту, то на 64 Мбайта уйдет больше часа.

Сегодня формат SmartMedia можно назвать мертвым. Некоторые карт-ридеры все еще поддерживают работу с ним (особенно самые понтовые а-ля "все-в-1"), но эта совместимость просто не актуальна. Хотя, конечно, определенную лепту в развитие флэш-технологий этот стандарт внес.

Формат MMC был представлен третьим по счету в 1997 году. Его разработкой занимались SanDisk и Siemens AG. Аббревиатура MMC расшифровывается как MultiMediaCard, что сразу говорит предназначении стандарта - цифровые мультимедийные устройства. Именно там MMC чаще всего и применяется.

В принципе MMC очень сильно связан с SD, особенно их первые версии. Тем не менее, они разошлись в своем развитии и сегодня второй является наиболее распространенным. Так что о нем мы расскажем в следующем подразделе.

MMC в отличие от CompactFlash и SmartMedia имеет более компактные размеры. В плане длины и ширины: 24х32 мм. Толщина карточек MMC составляет 1.4 мм, что примерно в два раза больше, чем у SM. Но этот параметр не так критичен, чем два других измерения.

За все время существования MMC было представлено целых восемь различных модификаций его карт. Первая (просто MMC) для передачи данных использует однобитный последовательный интерфейс, а ее контроллер работает на частоте до 20 МГц. Это означает максимальную скорость не более 20 Мбит/с (2.5 Мбайт/с или примерно 17х). В принципе довольно скромно по современным меркам, но 12 лет назад этого было достаточно.

В 2004 году представили форм-фактор RS-MMC. Приставка RS означает Reduced-Size или "уменьшенный размер". Ее габариты следующие: 24х18х1.4 мм. Можно заметить, что почти в два раза уменьшилась высота. В остальном это была точно такая же MMC-карта памяти. Но для ее установки в карт-ридер необходимо использовать механический адаптер.

Довольно краткоживущим оказался формат DV-MMC (DV означает Dual-Voltage – двойное напряжение). Такие карты могли работать на стандартном напряжении 3.3 В и на пониженном 1.8 В. Нужно это для экономии энергии. Тут явно прослеживается ориентация на мобильные устройства. Но DV-MMC карточки быстро свернули в связи с появлением форматов MMC+ (или MMCplus) и MMCmobile.

MMC+ и MMCmobile довольно существенно отличались от оригинальной спецификации MMC и представляли собой ее четвертую версию. Впрочем, это не мешало им сохранить полную обратную совместимость со старыми карт-ридерами и устройствами, но для использования их новых возможностей требовалось обновление прошивки. А возможности эти были следующими. К однобитному интерфейсу обмена данными добавились 4- и 8-битные. Частота контроллера могла быть от 26 до 52 МГц. Все это поднимало максимальную скорость до 416 Мбит/с (52 Мбайт/с). Оба этих формата поддерживали работу с напряжением 1.8 или 3.3 В. По размерам они не отличились от MMC и RS-MMC, соответственно MMCplus и MMCmobile.

Позднее появился самый маленький MMC – MMCmicro. Размеры карточки были 14х12х1.1 мм. В основе этого формата лежал MMC+ с некоторыми ограничениями. В частности из-за отсутствия дополнительных контактов (у MMC их 7, у MMC+ - 13) интерфейс обмена данными не поддерживал 8-битную передачу данных.

Имеется еще такой не совсем обычный формат как miCard. Его представили летом 2007 года с целью создать универсальную карту, которую можно вставлять как в карт-ридер SD/MMC, так и в разъем USB. Первые карточки должны были иметь емкость 8 Гбайт. Максимум же достигает 2048 Гбайт.

Ну и последний - это SecureMMC. Он также основан на спецификации версии 4.х, что использована в MMC+. Его главная возможность - поддержка DRM-защиты. Кстати, именно этим изначально и отличался формат SD от MMC. SecureMMC – это попытка конкуренции с SD. Так что переходим к этому стандарту.

Формат SD (Secure Digital) на сегодняшний день является наиболее популярным. Он и его модификации используются везде: в цифровых плеерах и фотоаппаратах (даже в зеркальных), в КПК и мобильных телефонах. Вероятно причина этого заключается в его постоянной поддержке и развитии со стороны многих компаний.

Представлен же SD был в 1999 году компаниями Matsushita и Toshiba. Полноразмерная карточка Secure Digital по своим габаритам такая же, как и MMC – 32x24x2.1 мм. Большая толщина объясняется наличием блокирующего от записи ключа. Впрочем, спецификация SD позволяет делать карты и без оного (они называются Thin SD), тогда тощина снижается до 1.4 мм.

Изначально выход SD ставил своей целью конкуренцию с MemoryStick (о нем рассказывается ниже), который поддерживал DRM-защиту медиа-файлов. Тогда компании-разработчики ошибочно предположили, что гиганты медиа-индустрии так насядут на онлайн-магазины, что все файлы будут защищены DRM. Вот и решили подсуетиться.

В основу Secure Digital легли спецификации MMC. Именно поэтому карт-ридеры SD запросто работают с MMC. Почему не наоборот? Для оберегания контактов от износа у карт SD они были несколько утоплены в корпус. Поэтому контакты карт-ридера, нацеленного только на работу с MMC, просто не достанут до контактов SD-карты.

В плане разнообразия форматов SD не менее "скромный", чем его предшественник. Прежде всего стоит отметить, что было представлено еще два форм-фактора: miniSD (20х21.5х1.4 мм) и microSD (11x15x1). Последний изначально был создан SanDisk и назывался как T-Flash, а затем как TransFlash. А после его адаптировала в качестве стандарта ассоциация SD Card Association.

Остальные различия касаются емкости карточек. И тут есть определенная путаница. Началась она еще с первого поколения карт, которые достигли объема 2 Гбайта. SD-карта идентифицируется 128-битным ключом. Из них 12 бит используются для обозначения числа кластеров памяти и еще 3 бита для обозначения числа блоков в кластере (4, 8, 16, 32, 64, 128, 256 или 512 - итого 8 значений, что соответствует трем битам памяти). Ну а стандартный размер блока для первых версий составлял 512 байт. Итого 4096х512х512 дает 1 Гбайт данных. Приплыли.

Когда "сверху" недостаток емкости стал поджимать появилась версия 1.01 спецификации, позволявшая использовать дополнительный бит для дополнительного определения объема блока - он теперь мог быть 1024 или 2048 байт, а максимальная емкость соответственно выросла до 2 и 4 Гбайт. Но вот незадача - старые устройства могли некорректно определять размер новых карт памяти.

В июне 2006 года появилась новая редакция стандарта - SD 2.0. Ему даже новое имя дали - SDHC или Secure Digital High Capacity (Secure Digital высокой емкости). Название говорит само за себя. Основное нововведение SDHC – возможность создания карточек объемом до 2 Тбайт (2048 Гбайт). Минимальная граница в принципе не ограничена, но на практике SDHC-карты имеют объем от 4 Гбайт. Примечательно, что искусственно ограничена максимальная граница - 32 Гбайт. Для более емких карт предлагается использовать стандарт SDXC (о нем ниже), хотя несколько производителей представили SDHC на 64 Гбайта.

Стандарт SD 2.0 использует для определения размера 22 бита данных, но четыре из них зарезервированы для будущего использования. Так что карт-ридеры, изначально не приспособленные для работы с SDHC, не смогут распознать новые карты памяти. Зато новое устройства запросто узнают старые карточки.

Вместе с анонсом формата SDHC появилась идентификация по скоростным классам. Их существует три варианта: SD Class 2, 4 и 6. Цифры эти обозначают минимальную скорость обмена данными для карточки. То есть карта с SD Class 6 обеспечит скорость минимум 6 Мбайт/с. Ну а верхняя граница естественно не ограничена, хотя пока что ситуация с картами SD обстоит примерно так же, как и с CompactFlash – самые быстрые представители достигли скорости 300х или 45 Мбайт/с.

Стоит добавить, что модернизации подверглись и миниатюрные форм-факторы. Про miniSDHC и microSDHC никто не забыл. Правда, попадаются в продаже в основном первые карточки. Сегодня их максимальный объем достиг уже 16 Гбайт, а на подходе 32 Гбайт варианты.

Ну и самая последняя новинка - стандарт . Назвали ли его версией 3.0 или нет, нам так выяснить не удалось. Однако от SDHC он отличается не столь значительно. Прежде всего для него сняли искусственное ограничение на максимальный объем, который теперь может достигать 2 Тбайт. Максимальная скорость обмена данными была повышена до 104 Мбайт/с, а в будущем обещают поднять ее до 300 Мбайт/с. Ну и в качестве основной файловой системы избрали exFAT (о ней рассказано ниже), тогда как SDHC довольствуется в большинстве случаев FAT32. Первые карточки SDXC уже были анонсированы и они имеют емкость 32 или 64 Гбайта. Но продуктов с их поддержкой еще потребуется обождать какое-то время.

Собственно о карточках SD все. Но в рамках этого стандарта выпустили еще несколько интересных вещей. К примеру, спецификацию SDIO (Secure Digital Input Output). Согласно ей используя форм-фактор и интерфейс карт SD можно создавать такие устройства как GPS-ресиверы, контроллеры Wi-Fi и Bluetooth, модемы, FM-тюнеры, Ethernet-адаптеры и др. То есть слот SD в этом случае служит неким аналогом USB.

SanDisk отличилась картами SD Plus, в которые сразу интегрирован USB-коннектор. Довольно интересную разработку представляет собой Eye-Fi. Это карта памяти со встроенным контроллером Wi-Fi. Последний может передавать данные с карточки на любой компьютер. Таким образом нет нужды даже извлекать ее из фотоаппарата или телефона.

Итого на сегодняшний день формат Secure Digital является самым популярным и быстрорастущим. Ему пока что пытается противостоять Sony со своими Memory Stick, но выходит у нее это плохо.

Memory Stick

Компания Sony известна своей нелюбовью к большинству форматов и стандартов, что не были разработаны ею. Оно и понятно - с них лицензионных отчислений не получишь. Так в итоге появились и DVD+R/RW и Blu-ray и карточки Memory Stick. Представленные в октябре 1998 года они до сих пор распространены только среди продукции Sony. Да и их выпуском занимается по большому счету только Sony и немного SanDisk. Итог этого закономерен: сравнительно слабая распространенность и более высокая цена, чем у других флэш-карт аналогичного объема.

За все время существования Memory Stick Sony выпустила целых семь модификаций. Причем, в отличие от MMC, все они в ходу. В итоге возникает закономерная путаница, а заодно производители карт-ридеров могут повысить число распознаваемых стандартов ихними продуктами.

Началось все с просто Memory Stick. Это вытянутая карта памяти размером 50х21.5х2.8 мм. Своей формой она чем-то напоминает пластинку жевательной резинки. Отличалась она, как мы писали выше, поддержкой DRM, которая так и не потребовалась. Емкость варьировалась от 4 до 128 Мбайт.

Со временем этого стало недостаточно, а поскольку обновленного стандарта еще не разработали, был анонсирован формат Memory Stick Select. Это обычная карточка Memory Stick, но внутри нее располагалось два чипа памяти по 128 Мбайт каждый. И между ними можно было переключаться при помощи специального переключателя на самой карте. Не очень удобное решение. Поэтому оно и было временным и промежуточным.

С малой емкостью удалось справиться выпустив в 2003 году Memory Stick PRO. Теоретически такая карта памяти может хранить до 32 Гбайт данных, но на практике более 4 Гбайт их не делали. Само собой большинство старых устройств не распознает PRO-версию, но зато новые запросто узнают Memory Stick первого поколения. Еще большую сумятицу вносит подвариант стандарта High Speed Memory Stick PRO. Такими были все Memory Stick PRO емкостью от 1 Гбайта. Понятно, что они могли работать в специальном высокоскоростном режиме. И очень радует, что все они обратно совместимы и с более старыми девайсами, только что скорость падала до обычной.

Со временем стало ясно, что потребуется идти по пути уменьшения карточек, а то "пластинки" Memory Stick далеко не везде удобно использовать. Так появились Memory Stick Duo размером 31х20х1.6 мм - чуть меньше Secure Digital. Но вот незадача, эти карты имели в своей основе первую версию стандарта Memory Stick, а вместе с ним и ограничение на максимальный объем. 128 Мбайт для 2002 года как-то уже совсем не солидно. Так и появился Memory Stick PRO Duo в 2003 году. И именно этот стандарт сегодня развивается более всего - уже существуют карты на 16 Гбайт, на подходе 32 Гбайт варианты, ну а теоретический предел по уверениям Sony составляет 2 Тбайта.

В декабре 2006 года Sony, совместно с SanDisk, анонсировала новую модификацию своих карт флэш-памяти - Memory Stick PRO-HG Duo. Его главное отличие от других вариантов - более высокая скорость работы. В дополнение к 4-битному интерфейсу обмена данными был добавлен 8-битный. Да и поднялась частота контроллера с 40 до 60 МГц. В итоге теоретический скоростной предел увеличился до 480 Мбит/с или 60 Мбайт/с.

Ну и следуя последнему писку моды в феврале 2006 года появился формат карточек Memory Stick Micro (или его еще называют M2), с габаритами 15х12.5х1.2 мм - это чуть больше microSD. Их емкость варьируется от 128 до 16 Гбайт, а теоретически может быть 32 Гбайта. Через переходник карта памяти M2 может быть вставлена в слот для Memory Stick PRO, но если ее объем более 4 Гбайт, то могут возникнуть определенные проблемы с распознанием.

Вот такая вот загогулина. Если разобраться, то в принципе и не сложно: Memory Stick – оригинальный формат не самых компактных размеров, Memory Stick PRO – вариант с большей емкостью и скоростью работы, Memory Stick (PRO) Duo - уменьшенная версия карточек, Memory Stick PRO-HG Duo – ускоренный вариант Memory Stick PRO Duo, Memory Stick Micro (M2) – самые маленькие Memory Stick. Теперь можно перейти к самому последнему стандарту - xD.

xD-Picture Card

Компании Olympus и Fujifilm посчитали, что существовавшие в первые годы этого века форматы флэш-карт не соответствуют ихним представлениям об идеальном хранилище данных для фотоаппаратов. Иначе чем объяснить разработку собственного стандарта xD-Picture Card?

Из названия формата следует, что он создан для хранения изображений. Но Olympus выпускает на его основе цифровые диктофоны, а Fujitsu - MP3-плееры. Впрочем, последних устройств куда меньше, чем фотоаппаратов с поддержкой xD. Однако если сравнить суммарный объем продаж цифровых камер Fujitsu и Olympus, то они никак не превзойдут показатели лидеров рынка - Canon и Nikon. А лидеры преспокойно используют CompactFlash в зеркальных камерах среднего и высшего уровней, а в остальных отлично прижился стандарт Secure Digital. Ну а раз распространение у карточек xD не очень большое, то в своем развитии они отстают от наиболее популярных форматов, а к тому же стоят дороже их. Примерно в 2-3 раза, если брать карты одной емкости.

Очевидно, что главная ориентация разработчиков формата xD (кстати, выпуском карт на его основе занимаются Toshiba и Samsung) заключалась в уменьшении размера карты памяти. Ее габариты следующие - 20х25х1.78 мм. Примерно как две Memory Stick Micro.

Емкость самой первой версии карт xD варьируется от 16 до 512 Мбайт. Представлены они были в июле 2002 года. Однако в феврале 2005 года появилось первое обновление, позволившее довести максимальный объем до 8 Гбайт. Новый стандарт назывался xD Type M. Увеличить объем удалось за счет применения MLC-памяти, которая в то же время оказалась более медленной. xD-карты Type M достигли объема 2 Гбайт. И пока что этот предел не преодолен ни Type M, ни более новыми стандартами.

Чтобы решить проблему скорости в ноябре 2005 года представили xD Type H. Этот формат был основан на памяти SLC, раз его выпуск решили прекратить в 2008 году из-за высокой себестоимости. Зато ему на смену в апреле 2008 года был выпущен Type M+. Карты этого формата примерно в 1.5 раза быстрее Type M.

Обратная совместимость различных версий форматов xD верна только для самых новых устройств - они запросто распознают более старые версии карточек. А вот старые устройства не обязательно узнают новые карты. Тут примерно такая же ситуация, как и у других стандартов.

Что касается скорости, то, как и в плане объема, xD совсем не блещет. Сегодня средняя скорость чтения Type M+ составляет 6.00 Мбайт/с (40х), а записи - 3.75 Мбайт/с (25х).

Итого формат xD-Picture Card в рознице более дорог, чем SD и CF. Карты памяти достаточно компактны, но их емкость уже не соответствует современным требованиям. Тоже самое касается и скорости работы. Для съемки видео с разрешением 640х480 при 30 кадров в секунду Type M+ еще достаточно. Но вот для сегодняшних зеркальных камер, снимающих кадры разрешением 12-24 МП и видео в формате 720p и 1080p этого явно мало. Тут совсем неплохо иметь карточку на 200-300х. Так что особого смысла в продолжении поддержки и развитии xD мы не видим. Не удивимся также, если вдруг его решат прикрыть, а следующее поколение камер переведут на SD и/или CF.

Аббревиатура SSD стала появляться в лентах новостей и названиях статей относительно недавно - пару лет назад. Причина этого в том, что массовой эта технология начала становиться только когда для хранения данных все чаще стала использоваться флэш-память, а упомянутые заголовки (и текст) новостей твердили о скором бурном росте этого рынка, попутно обещая вытеснение HDD. По крайней мере из сегмента ноутбуков и нетбуков.

Но самое интересное, что SSD не обязательно есть накопитель на основе флэш-памяти. SSD или Solid State Drive означает твердотельный накопитель. То есть тут важен скорее принцип, чем тип - для хранения данных используется "твердая" память. Память, которая не вращается, не вертится и не прыгает. Так что SSD вовсе не пару лет, а формально лет пятьдесят. Называлась тогда эта технология иначе, но опять же - тут важен принцип. А принцип сохранился.

Сегодня же актуальны два типа SSD: на основе энергозависимой памяти и на основе энергонезависимой. Первые - это те, что используют в своей основе SRAM или DRAM память. Еще их называют RAM-drive. Периодически такие SSD анонсируются производителями как сверхбыстрые носители данных. Некоторые из них даже позволяют самостоятельно наращивать объем, когда на плате банально установлены разъемы для обычных модулей памяти (DDR, DDR2 или DDR3 в самом современном варианте).

Ну а энергонезависимая память - это конечно же флэш. Создавать SSD на ее основе могли уже давно, но объемы такие накопителей были далеки от возможностей жестких дисков, а себестоимость значительно выше. Да и скорость не блистала. Но сегодня эти недостатки постепенно устраняются.

Первое поколение SSD имело емкость от 16 до 64 Гбайт, а стоили такие "флэшки" сотни и тысячи долларов. Это было примерно два года назад. Сегодня доступны варианты на 64-512 Гбайт при цене $200-1500. До винчестеров далеко, но уже куда лучше. За и на подходе SSD на 1 Тбайт в формате 2.5-дюймового жесткого диска. Напомним, что мобильные HDD пока не превысили объема 500 Гбайт. А настольные только-только добрались до отметки 2 Тбайта. Так что SSD идет вперед прямо-таки семимильными шагами.

Что касается скорости работы, то она также постоянно растет. Первое поколение SSD несколько отставало от мобильных жестких дисков, но современные накопители уже превзошли его. Достаточно вспомнить представленный в прошлом году SSD Intel X25-M, который имеет скорость чтения 250 Мбайт/с, а записи - 70 Мбайт/с. И стоит он не как полет на МКС - порядка $350 при объеме 80 Гбайт.

Конечно, существуют особо скоростные модели от Fusion-IO со скоростью чтения/записи 800/694 Мбайт/с или PhotoFast G-Monster PCIe SSD с 1000/1000 Мбайт/с, но оцениваются они в сумму как небольшой реактивный самолет. Ну и конечно же для обмена данными они используют не SerialATA, а обычный PCI Express x8 - этот стандарт пока еще способен обеспечить требуемую пропускную способность. Кстати, PCI Express x1 активно применяется для подключения SSD в нетбуках. Именно в таком формате выполнены их хранилища данных - в виде небольшой платы PCI-E x1.

Столь высокие скоростные показатели для SSD-накопителей были достигнуты благодаря параллельному считыванию данных сразу с нескольких чипов. К примеру упомянутый выше Intel X25-M работает по принципу RAID-массива уровня 0. То есть один бит пишется на первый чип, второй на второй и так далее. Организовать подобный механизм для обычной USB-флэшки или карты памяти крайне сложно, поскольку в них практически всегда устанавливается только один чип флэш-памяти.

Для увеличения емкости и снижения стоимости в SSD довольно часто используют MLC-память (в том числе и в X25-M). Более дорогие модели оснащаются SLC-чипами. Но если на USB-флэшку или какую-нибудь SD-карточку вы записываете данные сравнительно редко, то на SSD запись ведется непрерывно во время работы. Причем в большинстве случаев вы этого даже не знаете. Современные программы постоянно ведут различные логи; операционная система перемещает в своп-файл малоиспользуемые данные, высвобождая таким образом ОЗУ; даже элементарный доступ к файлу требует записи времени доступа.

Так что по-любому в SSD приходится устанавливать более долговечные чипы. Еще приходится беспокоиться об алгоритмах вычисления уровня износа и перераспределения данных - они должны быть более совершенными, чем у обычных флэшек. SSD-накопители даже имеют дополнительный чип энергозависимой кэш-памяти, как обычный жесткий диск. В кэше находятся данные об адресах блоков и данные об уровне износа. При выключении последние сохраняются на флэш-память.

В любом случае пока что технология SSD-накопителей на основе флэша продолжает бурно развиваться. Она предлагает несколько неоспоримых преимуществ перед HDD:

  • значительно меньшее время доступа к данным;
  • постоянная скорость чтения данных;
  • нулевой уровень шума;
  • меньшее энергопотребление.

На текущий момент остается довести число циклов перезаписи до такого количества, чтобы об этом можно было совсем не беспокоится. Емкость будет расти и без того. Не исключено, что в ближайшие 2-3 года она догонит и даже обгонит жесткие диски. Ну а цена падает сама собой, если технология перспективна, активно продвигается и уровень продаж постоянно растет. Не знаем, сможет ли SSD вытеснить HDD на рынке настольных компьютеров, но на мобильные они уже замахиваются.

Будущее

Собственно мы подошли к концу. Вывод из вышесказанного можно сделать следующий: флэш-память в будущем будет все больше распространяться и совершенствоваться. Пока не ясно, сможет ли она заменить жесткие диски, но задатки к этому у нее имеются. Но тут есть еще одна загвоздка - файловая система.

Современные файловые системы оптимизированы для использования вместе с жесткими дисками. А ведь HDD - это вовсе не SSD по своей структуре. Прежде всего доступ к данным на винчестере осуществляется при помощи LBA-адресации. Блок такого адреса позволяет вычислить на какой пластине, на какой дорожке и в каком секторе расположена запрашиваемая информация. Но вот незадача - у флэш нет пластин, дорожек и секторов. Но есть блоки, поделенные на страницы. Сегодня эта проблема решается трансляцией адресов из одного формата в другой, но куда удобнее было бы, если б все это происходило напрямую.

Еще одна особенность флэш-памяти - запись может осуществляться только в предварительно очищенные блоки. А эта операция занимает определенное время. Вот и неплохо бы очищать неиспользуемые совсем блоки во время простоя.

Современные дисковые файловые системы оптимизированы для минимизации времени доступа к данным - они стараются, чтобы их поиск происходил максимально быстро по диску. Но для флэш-памяти это просто неактуально - доступ ко всем блокам осуществляется одинаково быстро. Ну и не помешает поддержка вычисления уровня износа флэш-чипов со стороны файловой системы.

Так что дело ближайшего будущего - это выпуск новых файловых систем, оптимизированных для работы с флэш-памятью. Такие впрочем уже существуют, но современные ОС плохо их поддерживают. Примечательно, что одной из первых стала FFS2 от Microsoft, которую та выпустила еще в начале 90-х годов.

ОС Linux не отстает от прогресса. Для нее были созданы файловые системы JFFS, JFFS2, YAFFS, LogFS, UBIFS. Отличилась и Sun, разработав ZFS, которая недавно . Она оптимизирована не только для жестких дисков, но и для флэш-накопителей. Причем как для использования их в качестве основного хранилища, так и как кэша.

Тем не менее, сегодня самой популярной файловой системой для флэшек (не считая SSD) остается FAT и FAT32. Это просто удобнее всего. Они поддерживаются всеми операционными системами, не требуют драйверов. Но и их уже недостаточно для работы. К примеру ограничение на максимальный размер файла (4 Гбайта) уже становится неприемлемым.

Впрочем, у Microsoft есть замена - exFAT, ранее известная как FAT64. Как мы уже писали, она выбрана в качестве основной ФС для карт SDXC. Помимо оптимизации под флэш-память она поддерживает файлы размером до 16 экзабайт (16.7 миллионов терабайт), а в одну папку можно записать более 65536 файлов.

Поддерживается exFAT сегодня операционными системами Windows Mobile версии 6.0 и выше, Windows XP SP2 и выше, Windows Vista SP1, Windows Server 2008 и Windows 7 со сборки 6801. Заметим, что в Windows Vista флэш-накопитель на основе exFAT не способен использоваться как кэш в функции ReadyBoost. Соответствующая поддержка появится в Windows 7. Ну а что касается других ОС, то для Linux доступен бесплатный модуль ядра, позволяющий использовать exFAT только для чтения.

Так что наиболее перспективной ОС для флэш-приводов сегодня выглядит ZFS и exFAT. Но обе распространены весьма слабо, хотя у последней есть больше шансов стать популярной. Ее уже выбрали в качестве основной для карт SD последнего поколения и все наиболее популярные версии Windows ее "знают".

В остальном будем ждать дальнейшего наращивания емкости флэшек и снижения их стоимости. Технология эта очень хороша, поэтому мы желаем ей только успеха.